
 

 

 

 

 

3rd RNA-Seq 

Workshop Aachen 

2015 
Andrea Bräutigam and Marie Bolger 

 

 

 

 

 

 

 

Based on the workshop script (RNA-seq Workshop Düsseldorf) by Andrea Bräutigam, Björn Usadel 

Alisandra Denton and Simon Schliesky 

 

Sponsored by: 

Prof. Björn Usadel, RWTH Aachen University, IBMG: Institute for Biology I  

and 

  



RNA-seq Workshop Aachen 2015 
 

2 
 

BASICS 5 

UNIX/LINUX: COMMAND-LINE BASICS 5 

UNIX: USER PERMISSIONS 8 

FILE/DIRECTORY PERMISSION IN UNIX 9 

UNIX: ADVANCED COMMAND-LINE TOOLS 12 

REGULAR EXPRESSIONS 15 

PERL-BASICS 16 

CLC-BASICS 19 

EXPERIMENTAL DESIGN 20 

ASSEMBLY 23 

FORMATTING READS: GENERAL 23 

QUALITY CONTROL 25 

FORMATTING READS: ADAPTER TRIMMING AND QUALITY FILTERING 25 

TRANSCRIPTOME ASSEMBLY 28 

ASSEMBLY: CLC 28 

ASSEMBLY: TRINITY 29 

ANNOTATION 30 

ASSEMBLY PARAMETERS AND QUALITY 32 

USING SUBSETS OF .FASTA FILE 37 

READ MAPPING: LOCAL BLAST 38 

READ MAPPING: BLAT 41 

COUNTING READS: BLAST/BLAT 41 

READ MAPPING: BOWTIE2/TOPHAT2 43 

READ MAPPING AND COUNTING WITH CLC 45 

STATISTICAL EVALUATION OF READCOUNTS 45 

BIOLOGICAL INTERPRETATION 49 

CREATING AN FUNCTIONAL ANNOTATION 50 

ASSIGNING GROUP MEMBERSHIP USING EXCEL 51 

BIOLOGICAL INFORMATION FROM THE ASSEMBLY 53 

BIOLOGICAL INTERPRETATION OF MORE THAN TWO SAMPLES 54 

SNP CALLING 56 

SPLICE ISOFORM DIFFERENTIATION 56 

OTHER – LESS OBVIOUS – PIECES OF INFORMATION CONTAINED IN THE DATASET 56 

BIOLOGICAL INTERPRETATION OF TWO SAMPLES 57 

ANNEX 1: SETTING UP YOUR ENVIRONMENT 61 

SETUP YOUR WORKING ENVIRONMENT - EXAMPLES 61 



RNA-seq Workshop Aachen 2015 
 

3 
 

R: INSTALLATION OF R 65 

COPYRIGHT 69 

  



RNA-seq Workshop Aachen 2015 
 

4 
 

Version 5 as of March 23h, 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



RNA-seq Workshop Aachen 2015 
 

5 
 

Basics 

In this section we will start with some basic Unix commands. We will then give an overview on how 

to run both Perl and Unix programs/scripts. We will briefly introduce the CLC genomics workbench, a 

commercial graphical user interface which can be used for RNA-Seq analysis. 

Unix/Linux: Command-line basics 

Unix is a family of computer operating systems which derive from the original Unix developed by 

AT&T in the early 1970s. Operating systems such as Linux which behave like Unix systems, but do 

not conform to the Unix specification are commonly known as Unix-like. These include a wide variety 

of Linux distributions such as Debian, Ubuntu, Fedora and many more. For this course we are using 

Fedora (Version 19).  Most command we will use today are compatible on both Unix and Unix-like 

systems. We will therefore user the term ‘Unix commands’ to refer the commands we execute, thought 

this may not be strictly correct.  

Linux provides a variety of Desktop environments (graphical user interface - GUI) which offers the 

user a ‘look and feel’ similar to other popular operation systems. These ‘Desktop Environments’ (we 

use XFCE for this course) give graphical access to many useful programs and settings via menus bars 

and icons. There are however many programs, especially in Bioinformatics, which do not provide 

graphical interfaces and must be executed using text commands.  

To begin the course, we will introduce the Unix terminal/shell, which is a text-based interface where 

the commands are typed and the results of the command are shown. We will also teach you how to use 

some common commands, and then use these commands to navigate and manipulate files and folders 

on your machine. Before starting, you should first familiarize yourself with the Unix concepts in the 

table below, as we will be using these terms frequently 

 

Prompt This is used to indicate that the shell is ready for you to type in a 

command. This can vary depending on how your system is configured 

and which directory you are in – but it typically ends with the dollar 

sign $.  

Directory This is similar to the ‘Folder’ concept in other operating systems. 

Directories can hold files or other directories. 

Root directory This is the top level directory and is represented by / (a slash). All 

other directories and files are contained directory or indirectly under 

the root directory. This structure can be visualized as a tree, with the 



RNA-seq Workshop Aachen 2015 
 

6 
 

root as the base, directories as branches and files as leaves (although 

this is typically drawn with the root at the top). 

Current working directory This refers to the directory you are currently in. When you execute a 

Unix command, by default they work on the contents of this directory. 

The current working directory is represented by . (a dot). 

Parent directory The directory which contains a given directory. This can be visualized 

as one level nearer the root. The parent directory is represented as .. 

(two dots). 

Home directory This is directory for all your stuff. When you first open the terminal 

shell, this should be the ‘current working directory’. The home 

directory is also represented by the tilde ~. So if you call cd ~ this 

will bring you to the home directory.  

Path A path or pathname is a way of referring to a file (or directory) which 

is not in the current working directory. It consists of the list of 

directories which need to be navigated to access a file (or directory). 

Each component of a path is separated with / (a slash). 

A path can be either ‘relative’ or ‘absolute’. A relative path starts from 

the current working directory, and proceeds to upwards (via parent 

directories) and/or downwards, to indicate the target file (or directory). 

Absolute paths begin from the root folder, and are specified by starting 

the path with / (a slash). 

Command A piece of text that tells the computer to do something.  

Command argument Most commands require additional information, such as which input 

file to use, or where to send the output. These are typed after the 

command, separated from the command (and each other) by  spaces 

Command flag A command flag is typically an optional argument which changes the 

behavior of a command. 

 

 

 



RNA-seq Workshop Aachen 2015 
 

7 
 

Start the ‘Terminal’ by finding the black box icon on the home screen:  

 

This will open the command terminal and provide you with the command prompt from where you 

enter the commands.  

 

List the contents of directory you are in (current working directory): 

1 $ ls 

Desktop Documents Download Examples 

Here you can see the contents of your home directory, which is where the terminal opens by default.  

Change directory to move to the Desktop directory: 

2 $ cd Desktop 

List the contents of the Desktop directory: 

3 $ ls 

Change to the parent directory (the directory above the directory you are in): 

4 $ cd .. 

Move to the Examples directory: 

5 $ cd Examples 

 

The man command is one of the most useful commands provided by Unix. This gives access to the 

manual pages of any Unix command you wish to know about. Here you can find out what the 

command does, what flags it accepts and what argument should/can be provided. If you wish to find 

out more about the ls command, type man ls at the command prompt. To exit the manual pages, 

type the letter q. Be aware that manual pages are written in a very terse style, and can be difficult for a 

beginner to interpret.  

 

  

  

  

  



RNA-seq Workshop Aachen 2015 
 

8 
 

Most file and folder manipulations can be carried out using either commands (on the Terminal) or the 

Linux file manager GUI. If you feel more comfortable performing such operations on the GUI, you 

can do so.  

Find the file manager logo and click on it: 

 

Using the file manager GUI, create two new folders in your home directory called ‘results’ and ‘stuff’. 

Check on the ‘Terminal’ to see what has changed. 

Change directory to your home folder (the cd command without any arguments changes to your home 

directory): 

6 $ cd 

List the contents of this directory: 

7 $ ls 

You can now see the two folders you have just created in your home folder – The terminal and GUI 

are really not that different! 

 

Unix: user permissions 

Linux generally gives verbose (thought often not very clear) responses when it cannot run (execute) a 

program. There may be many underlying reasons for this, but a frequent cause is that the user does not 

have the permissions to run that program.  

How to run/execute scripts in Unix 

Quite simply, you just put ./ in front of the ‘file’ you want to execute. I say ‘file’ as you can pretty 

much execute any file (assuming it has the required permissions, of course). Executing a text file will 

at best output a list of ‘command not found’ errors – or at worse, find commands in your text which it 

will happily execute. We therefore typically do not give text files execute permissions. You may 

wonder why Unix command such as ls are not required to have ./ in front of the file(command) (ls 

is a binary file which you can find in /usr/bin/ls)? The reason is that the directory /usr/bin/ is 

contained in a configuration variable called the PATH. When files are in the PATH, you can execute 

them with just the name. If you want to see what is in your PATH, just type echo $PATH 

 



RNA-seq Workshop Aachen 2015 
 

9 
 

Generally, regular user accounts do not have system administration permissions (nor should they). If 

you have administration permissions (or access to the super-user account, often known as the root 

account), then you can changes permissions for all programs yourself. If you do not have 

administration permissions to your computer, you need to make sure your system administrator installs 

and tests that you have permission to execute all programs that you might want to use.  

The sudo (short for ‘super user do’) command in Unix allows a normal user to run a command as 

admin, though they will be required to enter their password before the command is executed. Before a 

user can use sudo, they must first be present in the ‘sudoers’ list. This needs to be be performed by 

someone with system administration permissions. Once they are configured to use sudo, they need 

only append sudo before the command. 

There are several cases where you might want to access files or folders which do not belong to you 

(and you do not have permissions to do so). The easiest solution if you have sudo rights is to run 

whatever isn’t working with the sudo command preceding. This gives you temporary superuser-

permissions (The highest level of permission you can get on a UNIX system).  

Using the sudo command is like telling a 3-year old child to do something. It WILL do it no matter 

how lethal the results will be. Running a malicious script with sudo can destroy your computer 

hardware. Just be sure you know what you are doing. During this course you do not have sudo 

permissions.  

 

Try listing the contents of the root user’s home directory: 

8 $ ls /root 

ls: cannot open directory /root: Permission denied 

 

IF you had sudo permissions (you currently do not), you could execute the command as follows: 

9 $ sudo ls /root 

[sudo] password for user: 

Once the password is entered, the contents of /root would be listed.  

 

File/Directory permission in Unix 

To see the permissions of files/directory, you need to run the ls command with the -l flag (you can 

find out more about the ls flags by looking at the man page): 



RNA-seq Workshop Aachen 2015 
 

10 
 

10 $> ls -l 

-rw-rw-r--.  3 user1 group1  1605 Feb  7 19:18 example_file1.txt 
-rw-rw-r--.  1 user1 group1  1605 Feb  7 19:28 example_file2.txt 
drw-rw-r--.  1 user1 group1  1605 Feb  7 23:07 example_directory1 

The addition of the -l flag to the ls command provides us with additional information about each file 

and directory. This information is explained in the table below.  

1 -rw-rw-r-- File/Directory permissions  

2 3 Number of links (this is beyond the scope of this course) 

3 user1 Owner name 

4 group1 Owner group 

5 1605 File size 

6 Feb  7 23:07 Time of last modification 

7 example_file1.txt File/Directory name 

 

The first character is - or d, d indicates that this entry refers to a directory.  

The remaining nine characters are in groups of three and refer to the read(r), write/modify(w) and 

execute/view contents (x) permissions for: 

 owner = rwx - The owner of the file is indicated by table entry 3 

 group = rw- - The group of the file/directory is indicated by table entry 4 

 other = r-- - This refers to everyone outside of the owner and group (aka the world) 

 

This table indicates permissions for different scenarios.  

-rwxrwxrwx File with full permissions. Everyone can read/write/execute this file. 

drwxrwxrwx Directory with full permissions. Everyone can read/write/view the contents. 

drwx------ Directory with read/write/view(execute) permissions ONLY for the ‘owner’. This is 

typical for your home directory where you do not want others to view/modify your 

files.  



RNA-seq Workshop Aachen 2015 
 

11 
 

-rwxr-x--- File where the ‘user’ can read/write/execute. The ‘group’ members can only read and 

execute and ‘other’ has no permission.  

 

To change file/directory permission you need to use the command chmod. This command can use a 

symbolic representation of changes or an octal number representing the number pattern for the new 

permissions. We will briefly explain both systems.  

To change using the symbolic representation, you need to provide: 

 whose permissions to change (user, group or other) 

 either + to grant the permission or - to revoke the permission 

 The permission to grant (read, write or execute) 

 

To change using the octal system, three numbers need to be provided which represent the cumulative 

permissions for the user, the group and other. The numbers are a binary representation of the rwx 

string.  

 r=4 

 w=2 

 x=1 

Simply total the values for the required permission for the user, group and others, to produce the octal 

permission code (the number 7 signifies full permissions) 

 

Create a New Document in the text editor containing the following two lines: 

#!/bin/bash 
date 

Save the Document as file_permissions.sh into your Home Directory. 

Move to your home directory and try to execute the script you just created: 

11 $ cd 
12 $ ./file_permissions.sh 

bash: ./file_permissions.sh: Permission denied 

 

That does not work, check the file permissions: 



RNA-seq Workshop Aachen 2015 
 

12 
 

13 $ ls –l file_permissions.sh 

-rw-rw-r--. 1 user1 group1 0 Mar 11 17:18 file_permissions.sh 

We can see that this file has read and write permissions for  user and group and only read permissions 

for other. Nobody has permission to execute this file.  

Add execute permission for the user: 

14 $ chmod u+x file_permissions.sh 

Alternatively you could have changed the permissions using the numbering system 

15 $ chmod 764 file_permissions.sh 

Now check again the permissions on your file: 

16 $ ls -l file_permissions.sh 

-rwxrw-r--. 1 user1 group1 0 Mar 11 17:18 file_permissions.sh 

 

We can now see the file has execute permission by user. Now run the script again: 

17 ./file_permissions.sh 

This time the script should output the current date and time.  

For the following, IT people would bang their heads against a wall or jump off a bridge, but if you 

work on your own computer, where no one else has access, you might also give all permissions to 

everyone (even permission to delete the file) 

Check the current permissions: 

18 ls –l file_permissions.sh 

 

Grant all permissions to everyone and check again: 

19 chmod 777 file_permissions.sh 
20 ls –l file_permissions.sh 

 

  

  

  

Unix: Advanced command-line tools 

During our work with large datasets we have come across a few helpful commands that can be used to 

easily extract information. We will show you a few. 



RNA-seq Workshop Aachen 2015 
 

13 
 

Change directory to the Examples directory. Here you should find the files ReadFile1.fa and 

ReadFile2.fa 

21 $ cd Examples 

To view the Readfile1.fa file, we can use the less command: 

22 $ less ReadFile1.fa 

Press the enter key to advance the file forward one line 

Press the space key to advance the file forward one page 

Enter q to close the file 

 

Sometimes you only want to look at the first or last few lines. To do so, you can use the head or tail 

command as follows: 

23 $ head ReadFile1.fa 
24 $ tail ReadFile1.fa 

The -n flag is frequently used with the head and tail command. This specifies the number of lines 

to view. To find out more use the man command.  

 

To output the complete file in the shell: 

25 $ cat ReadFile1.fa 

If you want to look at a file using an application on Windows operation system, do NOT use the 

default text editor. We recommend Notepad++ (http://notepad-plus-plus.org/). This will open even 

huge files without freezing or crashing. Notepad++ is also powerful enough to process translations of 

strings, something that can be really useful to reformat data. We will revisit Notepad++ when we look 

at extracting biological data. 

 

Before we introduce further commands, you will first need to understand the usage of the | (pipe) 

character. The pipe redirects output from one command into another command. You can think of it as 

analogous to a conveyor belt in a factory with each machine (command) doing something to the item 

(data) and passing it on the conveyor belt (via the pipe) to the next machine (command).  

Do this | with the result do that | and with the result of this do the next thing. We can write the results 

into a file in the same folder by ending the chain with > write to this file.txt. If you make Linux do 

something stupid, such as get stuck in a loop, you can always get out by typing Ctrl+C.  

 

http://notepad-plus-plus.org/


RNA-seq Workshop Aachen 2015 
 

14 
 

To count the number of sequences in a fasta file, we first find every line that has a > character using 

the grep (globally search a regular expression and print – a very powerful search utility) command. 

The output is then passed via the pipe to the wc command which counts the lines:  

26 $ grep “>” ReadFile1.fa | wc -l 

In this instance, we use the wc command with the -l flag which will count the lines (appropriate for 

this purpose, since each sequence name has its own line within the FASTA file). We could also 

substitute the -l flag for -w (count the number of words) or -m (count the number of characters), 

which are useful for other purposes 

 

We can use the wc -m command to estimate the number of bases in a fasta file. Since we don’t want 

to include the names, we first find every line that does not have a > character using grep -v | count 

the number of characters. The -v flag used on the grep command inverts the search to find non-

matching lines.  

27 grep -v “>” ReadFile1.fa | wc -m 

 

If you need to join two or more files together (files that are so large, that copy/paste operations no 

longer work since they require too much memory), one solution is to output both files, then redirect 

them to a single file using the ‘redirect to file’ symbol: 

28 cat Readfile1.fa ReadFile2.fa > Readfile1_2.fa 

Note the absence of spaces in the names! Working with spaces is a pain when using the command line 

(since spaces are also used to separate command arguments). It is best to avoid spaces and other 

esoteric characters when naming files and folders.   

Sometimes we want to change certain regular expressions (strings of characters that repeat) into 

something else. Text files generated on Macs contain the character ^M instead of a newline. 

First, take a look at the exampleM.txt file to verify that these characters are present: 

29 less exampleM.txt 

 

To remove these characters we use the tr command. This command translates a given character into 

another (or if empty, then none) character. We want to translate the ^M characters to new lines \n. You 

can enter the ^M character by pressing Ctrl+V and then Ctrl+M. 

30 cat exampleM.txt | tr '^M' $'\n' > example_noM.txt 

 



RNA-seq Workshop Aachen 2015 
 

15 
 

Now, take a look at the file again: 

31 less example_noM.txt 

The tr command is very powerful and can be used creatively for many different replacements (for 

more information, take a look at the man pages).  

 

Blat and tabular Blast output file (or any delimited text) can be parsed using Unix commands. 

Look at a Blat Output File from the GUI, note the pattern 

Look at an example file: 

32 less BlatOutput.psl 

 

We will now count how many unique ‘Reference Identifiers’ are in the file. We first remove the 

column which contains the identifiers (cut –f14), sort this column asciibetically (sort), omit 

repeating identifiers (uniq), and finally count the number of lines (wc -l).  

33 cut –f14 BlatOutput.psl | sort | uniq | wc –l 

 

We will now count many unique ‘Reads’ are in the file. To achieve this, we use a similar command 

but this time, we need to cut the ‘Read’ column (cut -f10) 

34 cut –f10 BlatOutput.psl | sort | uniq | wc –l 

The uniq command will not work correctly if the column is not sorted (using the sort command). 

Many kinds of tabular outputs can be parsed quickly and efficiently using similar commands.  

Regular expressions 

Regular expressions are an easy way to change repeated patterns in large files using a text editor such 

as Notepad++ (Windows System) or Textwrangler (Mac OS). With regular expressions you can match 

a string (a sequence of letters, numbers and signs) and delete it, replace it or change it. Since read files, 

contig assemblies or read mappings have regular patterns, regular expressions are very helpful 

especially if you have no knowledge about programming languages.  

 

Learn how to match regular expressions at http://regexone.com/ and test your skills using one of the 

example files. Alter all read names at once. 

  

http://regexone.com/


RNA-seq Workshop Aachen 2015 
 

16 
 

Perl-Basics 

Perl (probably already overtaken by Python) is a language in which many bioinformatics applications 

are written. Most biologists cannot read or write Perl (or Python) but fortunately this is not necessary 

to run Perl scripts. Perl scripts generally have the extension .pl and are run on the command line by 

appending the command perl. You can find Perl scripts to do most tasks somewhere on the internet.  

Perl is already installed on your machines and you can verify this by running the following command: 

35 $ perl -v 

This should return the version, patch level and license information for the installed version.  

Now that we have confirmed that Perl is installed, we will look for a script that produces a length 

histogram of sequences from a fasta file. We will search for this online using the keywords 

“histogram” “fasta” and “perl”. The file that I found as a best hit was called count_fasta.pl. If you 

have found this file (or similar), then download it (don’t forget to give/maintain a sensible name 

including the extention .pl) to the folder where your fasta file is waiting for analysis.  

36 $ cd Examples 

Once you are satisfied that your script is ready you try to run is as follows: 

37 $ perl count_fasta.pl ExampleFasta.fa 

Read the error message that was given, if any. Now, try again to invoke the script, this time with the 

required parameters: 

38 $ perl count_fasta.pl –i=100 ExampleFasta.fa 

The script writes to standard output (your terminal). Try to run it again, this time redirecting the output 

to a file: 

39 $ perl count_fasta.pl -i=100 ExampleFasta.fa > FastaHistogram.txt 

 

You can look at the documentation for a Perl program on the terminal/shell by calling the perldoc 

command: 

40 $ perldoc programname.pl 

Of course this is dependent on the person who wrote the program documenting the code (sadly, this 

will often not be present, especially if the script was originally written under time pressure).  

 

Here are some starting tips on understanding scripts (you can open the script you just ran as a 

reference): 



RNA-seq Workshop Aachen 2015 
 

17 
 

 It is possible to run Perl scripts without having to specify perl as part of the command. If the 

first line of the script begins with #!, this informs Unix how the file should be run (what 

command interpreter to use). In this instance it is using /usr/bin/perl to execute the 

script. The -w flag instructs Perl to turn on additional warning reporting. Other commonly 

seen command interpreters are /usr/bin/python (for python scripts) or /bin/bash (for 

shell scripts). The script must also be marked with execute permissions for this approach to 

work. Note that most of the other points below are specific to Perl scripts. As an exercise, 

copy the count_fasta.pl file to ~/bin/ and give it execute permissions, then try to run it 

without the perl prefix (remember that ~/bin/ is in the PATH, so will be accessible from 

anywhere : 

41 $ chmod 500 count_fasta.pl 
42 $ cp count_fasta.pl ~/bin/ 
43 $ count_fasta.pl -i=100 ExampleFasta.fa > FastaHistogram_test.txt 

 Everything that starts with a # sign (without the additional !) are called comments. They are 

not used in the running of the program, but to help a human reader.   

 Most scripts contain a set of comments (typically near the start or end) which indicate who 

wrote the script and where they come from. It may contain information on what the program 

does and information on how to run it.  

 The statements which start with use imports certain modules into the program which the 

program can then use. 

 Everything which starts with my $something, my %something, my @something stores 

some type of data.  

 foreach, while and if start loops which iterate over data.  

 print outputs something to your screen (or to a file).  

Always state the source of programs in your publication. Ideally you should cite the programmer even 

if you copied the script from an online source.  

  

  

  

  

  



RNA-seq Workshop Aachen 2015 
 

18 
 

When you are looking for a script to do a specific task, there are many online resources where you can 

check. Here are a few tips for using such resources:- 

 Forums specific for bioinformatics are a good starting point (seqanswers for instance) 

 Always search a forum first for the answer before you post your question. Not doing so 

suggests that your time is somehow more valuable that the people who reply to these forums. 

 Describe your problem/requirement in as much detail as possible. This makes it much easier 

for people to help you. 

 Do not post the same question repeatedly on different message boards (spamming).  

 Always be cautious when taking blind advice (or scripts) from forums. Many people posting 

on these forums are as clueless as you might be. When someone posts ‘well, that worked for 

me’, it suggest that the person did not understand the problem.  

 Become familiar with understanding scripts. Reading them is a much easier task than writing 

them.  

 Be courteous and thank people when they are helpful – it spreads good karma! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RNA-seq Workshop Aachen 2015 
 

19 
 

CLC-basics 

CLC is a GUI driven tool. Originally, CLC was developed for “single gene/protein” applications and 

the workbench still has those capabilities. It can be used as a substitute for your favorite cloning 

program. 

Since the advent of NGS, CLC has been developing analysis solutions, both for assembly and for gene 

expression analysis. We have tested CLC and in our hands its performance is comparable to freeware 

solutions without the installation hassles. But then, it is commercial. Development is ongoing and 

since we first tested the software, we have noticed major improvements throughout the NGS analyses 

capabilities. We cannot predict whether this will continue in future. 

Disclaimer: We are not affiliated with CLC bio in any way. We are not paid by, nor do we receive 

discounted software from CLC. The opinions expressed in this workshop reflect our own experiences. 

We do however receive trial licenses for use at this workshop. .  

 

1. Open the CLC genomics workbench by double clicking the CLC symbol on your desktop. The 

view is instantly familiar. 

  

  

  

  

  

  

  

  

  

  

  

  

 

  



RNA-seq Workshop Aachen 2015 
 

20 
 

Experimental Design 

Before you run an experiment, consider the following facts. NGS experiments are still very expensive 

and can rarely be repeated. It is therefore extremely important that you get it right the first time. We 

have learned the hard way that planning and preparation is time well spent. 

To replicate or not – It is tempting to avoid replicating your experiments due to cost 

considerations. We have performed technical replication and our results were very reproducible. 

However, biological variation is considerable since RNA-seq is a very sensitive technique. It also 

needs to be stressed that new technologies don’t mean that statistics has become obsolete. The 

statistical power of RNA-seq experiments performed with a single replicates is severely limited. 

Would you trust differences in a single leaf measurement on one WT and one mutant plant? Our 

recommendation is that you divide Illumina lanes by multiplexing or Roche plates by physically 

separating compartments on the plate. That keeps costs down while giving you biological 

replicates at the same time. If cost is severely limiting for you, consider (and convince your boss) 

reducing the number of samples you analyze. Most paper reviewers will reject papers based on 

the lack of replication.  

How many replicates? If your targets are (or may be) regulatory transcripts with expected low 

read counts, we recommend three or even four replicates. If money is not a problem, and you 

don’t know what to expect, we recommend three. If money is a problem, either perform two 

replicates or reduce sample number and still do three replicates. There is of course a tradeoff 

between replication and depth of sequencing. But most of the time Illumina sequencing allows 

both an adequate depth and replication. 

RNA quality – If sequencing fails, the problem is usually in the sample quality. Molecular 

biology grade RNA is not sequencing grade RNA.  

Presentation of different sequencing platforms and the RNA and library preparation methods 

of our lab  

  

  

  

  

Pitfalls to watch out for  

 Many mistakes, even those which occurred early in the experiment, will not be detected 

until you get the sequencing data back. In many cases, the data may be worthless, but the 

money is already spent. In the best case, it might be possible to recover some 



RNA-seq Workshop Aachen 2015 
 

21 
 

information, but generally this requires massive bioinformatics effort and typically gives 

less insight than a correctly performed experiment would.  

 DNA contaminated RNA samples literally cause nightmares both during assembly and 

quantification. 

 Failed library preps results in loss of replicates. It can make sense to take more samples 

than you plan to sequence, so you can substitute in a spare sample if an RNA extraction 

or library preparation fails. 

 Overconfidence in a single replicate RNA-Seq experiment causes fruitless time 

investment since results cannot be confirmed by properly replicated qRT-PCR (i.e. using 

three biological replicates).  

 RNA vanishes during DNAse digests (DNAse contaminated by RNAse).  

 RNA contaminations cause sequencing reactions to fail.  

Our rule of thumb – Once it is sequenced, it is over. Do not proceed with sequencing unless you are 

very confident that everything was done correctly.  

 

We need to find all mistakes beforehand, so we sometimes spend months optimizing the prep 

protocols before we go to sequencing. We have also been lucky: The initial sequencing of the 

Cleomaceae went well and RNA preparation took all of two days – with no quality controls 

except a bioanalyzer. But we have also been in a project where after spending 100k Euros the 

RNA turned out to be DNA contaminated – the stuff is still not published although we have 

already spent months of analysis time. That is not something you like to confess to your boss. 

Suggested Workflows for RNA-seq experiments 

Comparison within a species, e.g. tissues, treatments, time points. 

 Species with a sequenced genome – very short reads possible; assembly not required, 

may be useful to detect transcript isoforms; read alignment and quantification with fast 

aligners such as Bowtie possible; essentially like microarrays with more information 

available and more messy statistics 

 Species without a sequenced genome – long to very long reads recommended; assembly 

required; two read mapping methods available, intra-species on the assembly with a fast 

aligner such as Bowtie or cross-species on external reference with Blat or Blast; 

Potentially it is necessary to use long reads for an assembly and short reads to get a more 

unbiased quantification  



RNA-seq Workshop Aachen 2015 
 

22 
 

Comparison between different species 

 Both species without sequenced genomes – long to very long reads recommended; 

assemblies usually required; two read mapping methods available, both samples cross-

species on an equidistant reference such as Arabidopsis or each species onto itself with a 

fast aligner followed by a determination which contigs corresponds to which contig in the 

other species; 

 One species with a sequenced genome, the other one without – we have not attempted 

this strategy so far; the difficulty will be that now you look at two factors that influence 

your read count at the same time, expression level and evolutionary distance with the 

added problem that low coverage transcripts will yield no to bad contigs and therefore are 

discriminated against. This approach needs careful thinking through and validity controls. 

The following script is guided by approach rather than by workflow. Since each project is different, 

we have decided to show you what is possible rather than giving you a predetermined recipe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RNA-seq Workshop Aachen 2015 
 

23 
 

 

Assembly 

With the ever decreasing cost of sequencing, the amount of data generated from a single sequencing 

run poses computational challenges. For a de novo assembly, the computer has to deal with several 

million short reads with the objective to create full-length transcripts.  

There are two main strategies that assemblies follow:  

 Traditional overlap based assemblers  

 De Bruijn graph based assemblers. 

Presentation: Assembler basics 

The major limitation in computational read assembly lies in the memory consumption. Usually, you 

oversample during an experiment, that is, you have (at least in theory) more reads than you need to get 

the transcriptome assembled. Read errors and artifactual sequences are additional complicating factors. 

Therefore the best way to reduce the complexity of the read library is to remove sequences in reads 

that may contain errors and by removing reads that are too low quality.  

Before we start, let’s define the starting point. We assume that you start with “de-barcoded, de-

primered” sequence files which are what companies usually send you. However be aware that de-

primered usually means, there are still some primers left. (Don’t trust the data unless you did it 

yourself!)  

Formatting reads: general 

Usually Illumina reads come in multiple compressed *.fastq.gz files. The .gz extension indicates 

that the files were compressed using the gzip command. Compressed fastq files are commonly used 

since they require only a third of the disk space. However, for processing you may need to uncompress 

them. This step makes the read files more convenient for manipulation. 

Open terminal 

For libraries smaller than 100M reads: 

Go to the directory, where your .fastq.gz files are located: 

44 $ cd ~/Sample001 

 

In this directory you should find two .fastq.gz files. These files can be uncompressed and 

concatenated in one step using the zcat command: 

45 $ zcat *.fastq.gz > my_unzipped_reads.fastq 



RNA-seq Workshop Aachen 2015 
 

24 
 

 

Count the number of reads in the new file: 

46 $ grep “^@HW” my_unzipped_reads.fastq | wc -l 

 

Or the following (faster, but output has to be divided by four manually): 

47 $ wc -l my_unzipped_reads.fastq 

 

For large libraries (>100M reads) it is useful to concatenate the reads after the preprocessing steps. 

This allows the preprocessing of multiple files in parallel (instead of one massive file).  This means, of 

course, that the processing commands need to be run multiple times, once for each file. To make this a 

little easier, it helps to use a simple file naming convention e.g. my_reads1.fastq, 

my_reads2.fastq etc.  

Go to the directory where the .fastq.gz files are located. Create a new file with the following code, 

save it, give it execute permissions and execute it. This will uncompress all the files and rename them 

numerically starting from 1.  

#!/bin/bash 
gunzip *.fastq.gz 
#rename the files for structured processing 
COUNTER=1 
for file in *.fastq; do 
 mv $file my_unzipped_reads${COUNTER}.fastq 
 let COUNTER=COUNTER+1 
done 

Attention: if you encounter disk space issues you can unzip 1 file, process it and delete the unzipped 

file, and then go on with the next file. Make absolutely sure you have a backup copy (or better 

several backup copies) of the raw read files somewhere – you may not be able to get them from 

the sequencing provider again. The gunzip command will uncompress the file in place and not 

leave the .fastq.gz file. Therefore if you delete the .fastq afterwards, it will be GONE. 

 

  

  

  

  

  



RNA-seq Workshop Aachen 2015 
 

25 
 

Quality Control 

We use the FastQC tool to quickly assess the quality of the raw sequencing data. It is a relatively fast 

program which offers a user friendly graphical interface and allows the datasets to be quickly 

evaluated. 

To open FastQC, we can called the following command: 

48 $ fastqc -t 2 --nogroup & 

You may have noticed that sometime we use & (ampersand) at the end of the command line. This 

serves to run the command in the background, and therefore you can continue to use the terminal shell 

and do not have to wait until the program is finished. In this instance, this is sensible given that we are 

starting a graphical application which you will work with for some time.  

 

After we started the program, we use the graphical user interface to load our dataset. FastQC supports 

many different fastq formats including gzip compressed fastq files. After the data has been loaded 

and analyzed by FastQC, we can go through the different tabs and visualize the data quality. FastQC 

provides an evaluation for each module and indicates whether the results seem normal (green tick), 

slightly abnormal (orange triangle) or very unusual (red cross).  

Note the FastQC tests are designed for typical DNA sequencing experiments. Other forms of sequence 

data have characteristics that nearly always trigger the ‘red cross’ in specific tests. For example, RNA-

Seq data will typically have a high level of duplicated reads from the most highly expressed genes, 

which will be flagged as ‘very unusual’ although it is normal for this kind of experiment. 

Formatting reads: adapter trimming and quality filtering  

For trimming the adapters and PCR primers from the reads we will use Trimmomatic. This tool has 

several different functions which include  

 adapter clipping  

 quality clipping  

 discarding reads below a given quality or length.  

Trimmomatic is a modular tool and the user can perform only the functions they require. We perform 

adapter clipping, removal of low quality bases and reads that are too short to be useful (below 36 

bases). Before running Trimmomatic, we first need to know which library preparation kit was used 

and whether the library was run in paired-end (first command) or single-end (second command) mode. 

Trimmomatic can also run on compressed files, but in this case, we have already uncompressed them, 

so will run the tool on the uncompressed files.   



RNA-seq Workshop Aachen 2015 
 

26 
 

 

If we had Paired End reads, we would use a command like this: 

49 $ java -jar ~/bin/trimmomatic-0.33.jar PE -basein input_1.fq.gz -
baseout output.fq.gz  ILLUMINACLIP:../bin/adapters/TruSeq3-
PE.fa:2:40:12 LEADING:3 TRAILING:3 MAXINFO:40:0.4 MINLEN:36 

 

As our reads are Single-End, we use Trimmomatic in the SE mode: 

50 $ java -jar ~/bin/trimmomatic-0.33.jar SE my_unzipped_reads.fastq 
my_filtered_reads.fastq  ILLUMINACLIP:../bin/adapters/TruSeq3-
SE.fa:2:40:12 LEADING:3 TRAILING:3 MAXINFO:40:0.4 MINLEN:36 

 

java -jar ~/bin/Trimmomatic-0.33.jar  

This start the Trimmomatic tool. If ran without any parameters, Trimmomatic will give a list of options.  

 
PE  or  SE 
Paired End or Single End mode 

 
-basein input.1.fq.gz     

If files are used with the following (standard) naming convention, Trimmomatic will look for the other 

file automatically. Standard naming conventions are:- 

filename_R1_  trimmomatic will look for   filename_R2_ 

filename_f  trimmomatic will look for   filename_r 

filename.f  trimmomatic will look for   filename.r 

filename_1  trimmomatic will look for   filename_2 

filename.1   trimmomatic will look for   filename.2 

 
-baseout output.fq.gz     

Trimmomatic generates the four output files (in PE mode) based on the root file you give.  

 
output.fq.gz will give:- 

output_1P.fq.gz   forward paired file 

output_2P.fq.gz   reverse paired file 

output_1U.fq.gz  forward unpaired file 

output_2U.fq.gz  reverse unpaired file 

 
NOTE 

In SE mode, the -basein and -baseout flags are not used. Instead the input and output file names 

(one for each) are provided.  

 

ILLUMINACLIP:~/bin/adapters/TruSeq3-SE.fa:2:40:12  

The TruSeq3-SE.fa refers to the adapter library used. Trimmomatic provides files for the most 

commonly used adapters and this come with the Trimmomatic zip file.  

 

2 seed mismatches - up to how many mismatch bases (out of 16) is still okay. So 3/16 

mismatches will prevent a sequence being called an adapter 

 

40 similar to an e-value. Refers to how good the match needs to be in palindrome mode. Each 

matched base gets a score of 0.6 In palindrome mode, ~66 matches gives a score of 40 



RNA-seq Workshop Aachen 2015 
 

27 
 

 

12 As above but in non-palindrome mode. 20 base matches give a score of 12 

 

LEADING:3  removes bases at beginning of read of quality is below 3 

 

TRAILING:3 removes bases at end of read if quality is below 3 

 

MAXINFO:40:0.4 MAXINFO mode tries to preserve as much of the read as possible even if it means 

keeping some lower quality bases. This has been shown to give better downstream results.  

 

40 This indicates that trimmomatic should try to keep reads at least 40 bases long even if it 

results in bringing in some lower quality bases.  

 

0.4 This refers to the strictness of the trimming. 0=liberal  and 1=strict. This is a trade off 

between quality and length. For some de-novo assembly, we might use 0.9 here to be 

absolutely certain to get high quality reads.  

 

MINLEN:36 If a read does not get even this long, then it should be discarded.  

 

SLIDINGWINDOW:4:15 Sliding window used the more traditional method of checking the average 

quality over a given number of bases. If the quality falls under a given threshold, then the read is 

trimmed from that point.  

 

4 The window size - how many bases to evaluate for the given quality 

 

15 The average quality allowed for the given window size.  

 

Open the trimmed file my_filtered_reads.fastq again in FastQC and compare to the untrimmed 

version.  

  

  

  

  

  

  

  

  

  

  

 



RNA-seq Workshop Aachen 2015 
 

28 
 

Transcriptome Assembly 

If you work with a novel species, an assembly will be required to obtain the gene transcripts. Before 

creating the assembly, it is highly recommended to trim and filter the reads stringently (using 

Trimmomatic). Most experiments provide more reads than are needed for assembly, although only 

genes expressed at a sufficiently high level will be assembled into gene transcripts. 

Assembly: CLC 

The installation part is explained in great detailed in the CLC manual, so we assume it is already done. 

Please note that you can use CLC to clean the reads during import. We prefer to trim by using 

Trimmomatic. If you prefer to use just a single tool to do both tasks, then you can choose to clean the 

reads during the import process. 

1. Start the CLC Genomics Workbench 

2. Create a Folder for Sample 1 (Right click on CLC_Data->New->Folder) 

3. Import the Data with the following Chain of commands: 

From the toolbar choose NGS Import->Fasta [if cleaning reads in CLC, choose the appropriate 

format and follow the steps indicated by the program] 

Select Workbench, NEXT 

Browse to [Workshop Directory] select [TestDataSet], NEXT 

select Save, NEXT 

select the folder created in 3., FINISH 

4. The imported read library can be viewed by double-clicking the file in the navigation area. 

The steps for de novo assembly are as follows: 

In the menu click Toolbox->High-Throughput Sequencing->De Novo Assembly 

select Workbench, NEXT 

Select read files and click the  button, NEXT 

Change assembly parameters as desired (use default during workshop), NEXT 

Adjust the mapping (if at all) parameters (create a list of unmapped reads during workshop), 

NEXT 

Check create Report, select Save, NEXT 

select the Folder created in 3, (optional click +Folder icon and name results), FINISH 



RNA-seq Workshop Aachen 2015 
 

29 
 

5. To get an overview of the assembly open the report file with a double click. The number of 

contigs and the N50 are shown here. 

To export the assembled contigs, click export in the toolbar, select .fasta in the filetype 

dropdown menu and choose a folder and filename and click save 

Assembly: Trinity 

The Trinity suite can also be used to create the assembly. This suite is free to download and use 

(unlike CLC). It must however be noted that creating the assembly using Trinity is a computationally 

heavy process, and cannot run on the workshop laptops. It requires 30 minutes on a large server even 

for this relatively small dataset. We have therefore performed the assembly in advance.  

If working with paired-end data, the program can be invoked with the following command: 

51 $ Trinity --seqType fq –max_memory 50G --left  
my_filtered_reads_1.fastq –-right my_filtered_reads_2.fastq --CPU 12 

The options explained: 

(i) --seqType fq you are using fastq files 

(ii) –max_memory 50G you have up to 50Gb of RAM available  

(iii) --left my_filtered_reads_1.fastq The name and location of your paired end 

reads from one end. 

(iv) –-right my_filtered_reads_2 the name and location of your paired end reads 

from the other end.  

(v) --CPU 12 The number of CPUs which should be used by the program. 

 

For single-end data (which is what we are working with), the command line would be: 

52 $ Trinity --seqType fq –max_memory 50G --single 
my_filtered_reads.fastq --CPU 12 

Trinity will create a folder for its work (by default called trinity_out_dir), and populate it with 

many output files. The final assembly will be called Trinity.fasta. This file has been included in 

the Sample001 folder. 

 

 

 

 



RNA-seq Workshop Aachen 2015 
 

30 
 

Annotation 

A de novo assembly does not give any functional information about the transcripts which you have 

found. Annotation of the assembled transcripts using data from a closely related species is 

recommended. In our plant projects we use Arabidopsis thaliana as the reference since we consider it 

the best curated and annotated plant genome available. All assembled transcripts that cannot be 

annotated with A. thaliana references are then run against RefSeq from NCBI.   

 

1. Start a BLAT run to align the transcripts against the reference 

Start mapping with BLAT: 

53 $ cd Sample001 
54 $ blat ~/database/TAIR10_cds_20101214_updated Trinity_clean.fasta -

q=dnax -t=dnax contig2TAIR_mapping.psl 

 

2. Extract the best hit for each mapping 

Cut columns 1, 10 and 14, sort by ‘query id’ and ‘number of matching bases’ and extract best hit: 

55 $ cut -f1,10,14 contig2TAIR_mapping.psl | sort -k2,2 -k1,1nr | 
single_best_blat_hit.pl > best_annotation.txt 

 

3. Open a spreadsheet program, e.g. MS Excel or LibreOffice Calculate and load your annotation file 

a. MS Excel: Data -> Insert Text from File -> Choose Tab as separator 

b. LibreOffice Calc: Insert -> Sheet From File -> Choose Tab as separator 

4. Load the TAIR functional descriptions file in the same way (file is 

~/database/TAIR10_functional_descriptions.clean).  

5. Rename the two sheets: 

a. Right-click on the annotation tab -> rename to ‘annot’ 

b. Right-click on the descriptions tab -> rename to ‘desc’ 

6. Assign the functional descriptions to the identifiers using VLOOKUP (Deutsch:SVERWEIS) 

a. Switch to the ‘annot’ sheet. 

b. The data should be in three columns which are: ‘number of matching bases’, ‘query’ and 

‘target’ (the acutual columns do not have these heading). 

c. Click the empty cell D1 



RNA-seq Workshop Aachen 2015 
 

31 
 

d. Type =VLOOKUP(C1,desc.A2:E41672,5,FALSE) in cell D1. In Excel, the command 

would be =VLOOKUP(C1,desc!A:E,5,FALSE) 

The VLOOKUP-function is very powerful, but an error can mess up the whole analysis. The function 

looks for a specific value (C1) within a matrix (desc.A2:E41672) and returns the value of a 

specified column (5), that is in the same line as the found search value. The four parameters (in Libre 

office) are defined as: VLOOKUP(Search criteria, Search array, Return Column, Sort 

Order) 

a. Search Criteria This is the value which has to be searched for in the determined 

search range and can either be a value or a cell. 

b. Search Range This marks the range of cells to be scanned for the search value and the 

return value. 

c. Return Column This parameter takes a number that determines the number of the 

column within the Search Range to return a value from. 

d. Sort order This is an optional parameter which specifies if it looks for an exact match 

(FALSE or 0) or the closest match in a sorted list (TRUE or 1). 

Attention: Always use FALSE as last parameter in the VLOOKUP function. Since gene identifiers tend 

to look very similar, you can easily assign the wrong descriptions to your contigs by using TRUE. 

7. Now cell D1 should show the first gene description. You can now copy the formula to the rest of 

the lines by 

a. Copy and pasting (tedious for over 40000 entries). 

Double-clicking on the black box in the lower-right corner of the cell (this will also take a long 

time!!!)  This step is optional in the workshop. You can find the already find the file 

Trinity_annotations.ods in the ~/Samples001. You can therefore open the file and skip to 

step 10.  

Attention: The Program will recalculate the cells over and over, whenever you change anything in any 

cell. Therefore it is highly recommended to select all cells containing VLOOKUP (click on the column 

header D to select the whole column), copy them, and paste them as values instead of formulas (Right-

click -> Paste Special -> Values only).  

8. Clean Up: After replacing the formulas by values, you can safely delete the ‘desc’ sheet to reduce 

the file size. 

9. Save the file as Trinity_annotations as an ODF Spreadsheet (.ods).  



RNA-seq Workshop Aachen 2015 
 

32 
 

10. Delete columns A and C and save the file as a ‘CSV file’ (call the file 

Trinity_annotations_trimmed), using ‘Tab’ as a delimiter.  

11. Use the Perl script AppendHeaderToFasta.pl to translate the generic fasta headers to a more 

meaningful header. 

 

First we will check the usage of the script: 

56 $ perldoc AppendHeaderToFasta.pl 

Run the script according to instructions and save the output.  

57 AppendHeaderToFasta.pl Trinity_annotations_trimmed.csv 
Trinity_clean.fasta > annotated_sequences.fasta 

Take a look at the results.  

 

Assembly parameters and quality 

Most NGS papers will start (and some even end there) with descriptive data tables. These need to be 

generated although they are rather boring from a biologist’s point of view. A number of parameters are 

generated by the count_fasta.pl script: number of contigs, N25, N50, N75, GC content and a 

length distribution.  

Some parameters are generated by annotation against a reference:  

How many contigs match the reference?  

How many unique reference sequences are covered?  

How often each reference sequence is covered (gives an idea about the assembly quality)?  

A second question is how good the assembly is? It is difficult to give a final answer to this question 

but the following parameters will help: 

 

Number of contigs:  

The number of contigs cannot be applied as a direct measure for the assembly quality. It is however 

still possible to compare it to the number of expected transcripts. How many transcripts do I expect? 

Unfortunately there is no golden rule for this question. Make an educated guess! To give an example: 

A leaf transcriptome is thought to consist of roughly 50 - 60% of the plant’s genes. Therefore in 

Arabidopsis one would expect the leaf transcriptome to have approx. 20,000 different transcripts. 

To count the number of transcripts, grep the lines preceded by “>” from your transcripts 



RNA-seq Workshop Aachen 2015 
 

33 
 

58 $ grep “^>” Trinity.fasta | wc -l 

 

 

Number of contigs, N25, N50, N75, GC content, a length distribution:  

One program which gives a fairly comprehensive parameter list is the count_fasta.pl script which 

you used in the introduction. 

Run the Perl Script count_fasta.pl as described earlier on two example files and write the output 

to a file: 

59 $ count_fasta.pl –i=100 ExampleFile1.fa > ExampleFile1_histogram.txt 
60 $ count_fasta.pl –i=100 ExampleFile2.fa > ExampleFile2_histogram.txt 

Copy the result into Libre office (or Excel) and visualize the histogram. For comparison, it is useful to 

also plot a histogram of Arabidopsis transcripts. 

If you compare two samples or closely related species, the parameters should be roughly similar. 

You can run the same program on a reference transcriptome from a closely related species with a 

sequenced genome. Under the assumption that the genomes are reasonable similar, you can use the 

values generated from the reference as benchmarks for your assembly. 

  

  

  

  

  

  

  

  

 

 

How many contigs match any reference? 

How many unique reference sequences are covered?  

How often each reference sequence is covered?  

 



RNA-seq Workshop Aachen 2015 
 

34 
 

To identify these parameters mentioned, you need a tabular (!) Blast or BLAT output  

 

Output Format of a Blast Table: 

column 
number 

Description comments 

1 Query sequence you used to search 

2 Subject sequence you in reference database 

3 % identity 
identity along the match (not between complete 
sequences) 

4 alignment length 
 

5 number of mismatches 
 

6 number of gap openings 
 

7 start of matching query sequence 
 

8 end of matching query sequence 
 

9 start of matching subject sequence 
 

10 end of matching subject sequence 
 

11 e-value careful, depends on reference database size! 

12 bit score independent of reference database 

 

Output Format of a Blat Table: 

column 
number 

Description comments 

1 Match Number of matches 

2 Mismatch Number of mismatches 

3 Rep. match Number of matches that are part of repeats 

4 N’s Number of N’s in alignment 

5 Q gap count Number of gaps in query 

6 Q gap bases 
 

7 T gap count Number of gaps in target 

8 T gap bases 
 

9 Strand 
 

10 Q name Name of query sequence 

11 Q size 
 

12 Q start 
 

13 Q end  

14 T name Name of target sequence 

15 Tsize  

16 T start  

17 T end  

18 Block count  

19 Blocksizes  

20 qStarts  

21 tStarts  



RNA-seq Workshop Aachen 2015 
 

35 
 

 

Extract the number of queries with a match (assembled transcripts/contigs found in reference) in the 

Blast output file contig2TAIR_mapping.txt (we will explain later how to run Blast from the 

command line): 

61 $ cut –f1 contig2TAIR_mapping.txt | sort | uniq | wc –l 

 

Extract the number of matching references: 

62 cut –f2 contig2TAIR_mapping.txt | sort | uniq | wc –l 

 

Find out how many times each reference sequence was matched: 

63 cut –f2 ExampleBlastResult.txt | sort | uniq –c > 
ExampleBlastResult_frequencyofmatches.txt 

Open the table in a spreadsheet program and sort by the number of matches then inspect the table 

manually. 

Using the countif (zählenwenn) function, test how many references are matched more than 100, 

more than 50, more than 10, more than 5, more than 1 times. 

 

In our experience, genes that are highly expressed yield many contigs in the assembly. For a typical 

leaf transcriptome assembly, the worst offenders are LHC and photosynthesis genes. For you 

experiments, it may be others. Generally, with a smaller dynamic range of your sample, this is less of a 

problem.  

  

  

  

  

 

Hybrid transcripts While you want complete contigs for your transcriptome reference database you 

also want the contigs to contain sequence from only one transcript. However, since Murphy’s law 

applies to assemblies too, there will be contigs that consists of two or more transcripts which we call 

hybrids. Simon Schliesky has developed a script that can recognize these hybrids (if only in 

Arabidopsis yet). The FASTA-like output makes counting easy. 

 



RNA-seq Workshop Aachen 2015 
 

36 
 

This script needs the BLAT contig mapping (contig2TAIR_mapping.psl) which was created in 

the annotation section. 

Sort the contig2TAIR_mapping.psl file by ‘query’ and ‘number of matching bases’ (reversed) and 

pipe the results to the Perl script: 

64 $ tail –n +6 contig2TAIR_mapping.psl | sort -k10,10 -k1,1nr | 
detect_hybrids.pl > hybrids_contig2TAIR.txt 2>/dev/null 
 

We have appended 2>/dev/null to the command to suppress the debugging output. This redirects 

the output to a ‘null’ device which is used for disposing of unwanted output streams.  

 

You can use the head command to check whether the script worked: 

65 $ head hybrids_contig2TAIR.txt 

Confirm that this look similar to the output example:  

 Each contigID line begins with > 

 Every contig that mapped only to one target is tagged ‘not a hybrid’ 

 

Count how many contigIDs were processed: 

66 $ grep “>” hybrids_contig2TAIR.txt | wc -l 

 

Count the IDs that are ‘not a hybrid’: 

67 $ grep “>” hybrids_contig2TAIR.txt | grep “not a hybrid” | wc -l 

 

Counting the IDs that are hybrids (just reverse the second grep with the -v flag): 

68 $ grep “>” hybrids_contig2TAIR.txt | grep “not a hybrid” -v | wc -l 

  

  

  

  

  

Our list of scripts to quality control an assembly can be found in the following paper: 

http://journal.frontiersin.org/Journal/10.3389/fpls.2012.00220/full 

http://journal.frontiersin.org/Journal/10.3389/fpls.2012.00220/full


RNA-seq Workshop Aachen 2015 
 

37 
 

Using subsets of .fasta file 

Sometimes it is desirable to extract a specific set of contigs to work on. For example, you might want 

to extract all contigs which match A. thaliana. If you have a list of the contig identifiers, you can 

extract the sequences from a fasta file. If you want to extract all contigs that map to chromosome 1 of 

the Arabidopsis reference: 

1. Open the annotation file created in the annotation part with Libre Office 

(Trinity_annotations.ods) 

2. Sort by Target column (C) 

3. Select all query identifier (column B) that match AT1GXXXXX 

4. Right-click->copy 

5. Open text editor 

6. Paste the identifiers (should be one per line now) 

7. Save the file to as ids_to_extract.txt 

8. Open Terminal 

9. Run the Extract_Sequence_by_ID.pl script as follows: 

69 $ extract_sequence_by_id.pl --ID=ids_to_extract.txt --
sequences=Trinity_clean.fasta --fileformat=txt --outfile=subset.fasta 

 

10.  [optional] An additional parameter is the --exclude if you rather want the sequences 

NOT mentioned in the file ID=xxx 

11. [optional] The fileformat parameter can also be set to fasta, in case your identifier 

are preceded by a >, when grep’d from different fasta file for example. 

 

  

  

  

  



RNA-seq Workshop Aachen 2015 
 

38 
 

Gene Expression 

There are two fundamentally different gene expression quantification experiments:  

(i) When you have sequenced a species and you want to map the reads TO A DIFFERENT 

SPECIES – use Blast or Blat.  

(ii) you have sequenced a species and want to map the reads TO THE SAME SPECIES, either the 

genome reference or assembled contigs – use BWA, Bowtie (or one of its many applications) 

or CLC bio. 

Presentation: Principles of read mapping algorithms 

  

  

  

  

Read mapping: local BLAST 

The most traditional software for mapping reads to a reference is the Basic Local Alignment Search 

Tool, short BLAST. It essentially takes two .fasta files as parameters. One is the read file, the other 

the database, which the reads will be aligned to. BLASTing your reads with a BLAST web interface 

would take quite long and would not be very comfortable given the number of sequences you are 

dealing with. Thus you will learn to use a local BLAST on your computer in this section.  (The 

installation of Blast is described in the appendix) 

 

1. To create a blast database for Arabidopsis, normally you would need to download the sequences 

from Arabidopsis.org, but for time reasons we have already downloaded it for you. To download 

the file, you could use the command wget. Check out what the command does using the man 

command.  

70 $ wget 
ftp://ftp.arabidopsis.org/Sequences/blast_datasets/TAIR10_blastsets/T
AIR10_cds_20101214_updated 

 

Instead, just change to the database directory directly in your home directory: 

71 $ cd ~/database 

 

 

ftp://ftp.arabidopsis.org/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_cds_20101214_updated
ftp://ftp.arabidopsis.org/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_cds_20101214_updated


RNA-seq Workshop Aachen 2015 
 

39 
 

Format as nucleotide database to allow it to be used with BLAST: 

72 $ formatdb -pF -i TAIR10_cds_20101214_updated 

-pF This means that it is not a protein alphabet F=False  

2. Prepare the read file (BLAST takes .fasta files only). As the target in read mapping is to get 

quantitative information, you wouldn’t want to map your duplicate removed .fasta from the 

assembly part. 

 

Change directory to the Sample001 directory: 

73 $ cd ~/Sample001 

 

Use the script fastq_to_fasta to convert your trimmed reads to the fasta format: 

74 $ fastq_to_fasta -Q33 -i my_filtered_reads.fastq -o 
my_filtered_reads.fasta 

 

You’re dealing with small test datasets in this workshop, that’s why we concatenate the single .fasta 

files. However, when dealing with very large datasets, it might be preferable to work on the individual 

files in parallel and merge the information at the result level (after mapping) 

 

3. Although the list of possible blast parameters is very long, it is sufficient to supply a handful: 

a. -d database the reference database to BLAST against 

b. -i query_file the query read file 

c. -e 0.0001 e-value default is 10 (here 0.0001 or 10^-04) 

d. -m8 output format (8: tabular ouput, 1 line per match) 

e. -a N use multiple=N CPUs (here: -a6) 

f. -FF deactivate read masking 

g. -p algorithm either blastn, blastp, blastx, tblastp or tblastx (here: 

tblastx) explanation see: http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml 

h. -o output_file, the result file 

i. - b1 only one hit 

http://www.ncbi.nlm.nih.gov/BLAST/blast_program.shtml


RNA-seq Workshop Aachen 2015 
 

40 
 

 

The following Blast command would take too long on the Workshop laptops. We have therefore 

already created the output file which would be generated form this command. This can be found in 

~/Sample001/mapping001/Sample001_to_TAIR10cds.txt. 

The following command would start BLAST (all written in one line! The multiline version in this 

script is just for ease of reading): 

75 $ blastall -d ~/database/TAIR10_cds_20101214_updated  
      -i ~/Sample001/my_filtered_reads.fasta  
      -e 0.0001 
      -m8 
      -a6 
      -FF  
      -p tblastx –b1 
      -o mapping001/Sample001_to_TAIR10cds.txt 

 

4. Parsing the BLAST output is covered in the “Counting reads” section 

 

Change to the mapping directory: 

76 $ cd mapping001 

 

Use the head command to see how the result file looks: 

77 $ head Sample001_to_TAIR10cds.txt 

Use cut to remove the desired columns (‘query’, ‘target’ and ‘e-value’): 

78 $ cut -f1,2,11 Sample001_to_TAIR10cds.txt > 
cut_Sample001_to_TAIR10cds.txt 

 

Use sort to sort the results by ‘query id’ and then numerical reverse by ‘e-value’: 

79 $ sort -k1,1 -k3,3nr cut_Sample001_to_TAIR10cds.txt > 
sort_Sample001_to_TAIR10cds.txt 

Run the script single_best_blast_hit_only.pl to narrow down the mapping to one match per 

read: 

80 $ single_best_blast_hit_only.pl sort_Sample001_to_TAIR10cds.txt > 
best_Sample001_to_TAIR10cds.txt 

 

http://www.google.com/url?q=http%3A%2F%2Fsingle_best_blast_hit_only.pl&sa=D&sntz=1&usg=AFQjCNHf3kvSQKXYHp4m8_q2i6qinv6KKA


RNA-seq Workshop Aachen 2015 
 

41 
 

Count the number of reads by cutting the ‘target’ column and counting frequency of unique IDs: 

81 $ mkdir Count001 
82 $ cut -f2 best_Sample001_to_TAIR10cds.txt | sort | uniq -c | awk 

‘{print $2”\t”$1}’ > readcounts_Sample001_to_TAIR10cds.txt 

 

 

 

 

Read mapping: BLAT 

BLAT (BLAST Like Alignment Tool) is a tool which operates faster with read-mapping than its older 

brother BLAST. It is suitable for contig annotation and read mapping of small libraries (less than 

1million reads) 

 

1. Running BLAT requires a few parameters 

a. the reference database for alignment 

b. the query file containing the reads 

c. -q=X, the alphabet of the query (here: -q=dnax) 

d. -t=X, the alphabet of the database (here: -t=dnax) 

e. output_file, the result file ending in .psl 

 

The following BLAT command would take too long on the Workshop laptops. We have therefore 

already created the output file which would be generated form this command. This can be found in 

~/Sample001/mapping001/Sample001_to_TAIR10cds.psl. 

 

83 $ blat ~/database/TAIR10_cds_20101214_updated 
~/Sample001/my_filtered_reads.fasta  
 -q=dnax -t=dnax mapping001/Sample001_TAIR10cds.psl 

2. Parsing of BLAT output is covered in the “Counting reads” section. 

Counting reads: BLAST/BLAT 



RNA-seq Workshop Aachen 2015 
 

42 
 

Blast and Blat are much slower than Bowtie but they tolerate many more non-matching bases in the 

reads vs. the reference. The output returns not only the best hit but all hits within the matched 

parameters. Therefore we developed two parsing scripts, one for ‘BLAST -m8’ and one for ‘BLAT’ 

output files. Both extract from a sorted list of mappings only the best hit for each query. With Blast the 

best hit = lowest e-value. In the case of BLAT best hit = highest number of matching bases.  

1. Parsing of the BLAT/BLAST output is done with Unix command-line tools and some Perl. First 

we reduce the amount of data to handle, by extracting the columns we need for further analysis.  

 

BLAST Specific steps: 

Extract columns 1, 2 and 11 which correspond to ‘query’, ‘target’ and ‘e-value’ and write these to 

a new file: 

84 cd 
85 mkdir counts001 
86 cut -f1,2,11 ~/Sample001/mapping001/Sample001_to_TAIR10cds.txt > 

~/counts001/cut_Sample001_BLAST.txt 

 

Sort the file first by ‘query’ (column 1) then by ‘e-value’ (column 3) and output these to a new 

file: 

87 sort -k1,1 -k3,3nr ~/counts001/cut_Sample001_BLAST.txt > 
~/counts001/sort_Sample001_BLAST.txt 

 

BLAT specific steps: 

Extract columns 1, 10 and 14 which corresponds to the ‘number of matches’, ‘query’ and ‘target’ 

and output them to a new file: 

88 tail -n +6 ~/Sample001/mapping001/Sample001_TAIR10cds.psl | cut -
f1,10,14 > ~/counts001/cut_Sample001_BLAT.txt 

Sort the file first by ‘query’ then by ‘number of matching bases’ and output this to a new file: 

89 sort -k2,2 -k1,1nr ~/counts001/cut_Sample001_BLAT.txt > 
~/counts001/sort_Sample001_BLAT.txt 

 

Run the Perl script single_best_blat_hit.pl: 

90 $ cd ~/counts001/ 
91 single_best_blat_hit.pl sort_Sample001_BLAT.txt > 

best_Sample001_BLAT.txt 

 



RNA-seq Workshop Aachen 2015 
 

43 
 

 

Steps for both BLAT and BLAST: 

From the resulting file you can count the reads by counting the occurrence of unique target IDs. In 

other words, if one ID was hit by 50 reads, it is 50 times in the list. Therefore the command uniq -c 

will return 50. 

Remember to ALWAYS sort before calling uniq –c: 

92 cut -f2 sort_Sample001_BLAST.txt | sort | uniq -c > 
~/counts001/readcount_Sample001_BLAST.txt 

for BLAT use cut -f3 and the BLAT mapping file 

2. For import to MS Excel or LibreOffice set white-space and tabulator as separator and check 

“merge separators”. 

Read mapping: Bowtie2/Tophat2 

Bowtie2 is a very fast and powerful short read aligner, which can be used to map directly to the 

genome and pick up splice variants when used with the Bowtie2/Tophat2/Cufflinks pipeline. As with 

all fast aligners, Bowtie2 can only tolerate a small number of mismatches.  

 

1. The first step is to build a reference index for Bowtie2.  

a. first argument is a fasta file (generally of the full genome, or contigs) 

b. second argument is the root name of the index to be created 

 

93 $ cd ~/database 
94 $ bowtie2-build TAIR10.fa TAIR10.index 

 

 

2. The Tophat2 program repeatedly calls Bowtie2 in a robust method to allow mapping across splice 

junctions. Performance is improved if the genome annotation file (.gff/.gff3) is supplied.  

a. --b2-very-sensitive is the most sensitive standard setting 

b. -p specifies the number of cores 

c. -o specifies the output directory 

d. -G specifies the gff annotation file for the genome. Bowtie will construct another 

transcriptome-specific mapping index from this. 



RNA-seq Workshop Aachen 2015 
 

44 
 

e. --transcriptome-index tells bowtie to save this transcriptome index under the given 

name for later usage. (-G does not need to be called for later runs against same genome) 

 

95 $ cd ~/Sample001 
96 $ tophat2 --b2-very-sensitive –p2 -o Sample001.topout -G ~/database 

/TAIR10_GFF3_genes.gff –-transcriptome-index=../database/TAIR10_trans 
~/database/TAIR10.index my_filtered_reads.fastq 

 

f. the penultimate argument specifies the path to the Bowtie index made above 

g. the final argument is the reads file(s) 

 

3. The reads are now mapped, but this pipeline allows us to get closer yet to a user-friendly output 

using cufflinks. Cufflinks assembles the transcripts, from which the reads were most likely to have 

been generated and provides the user directly with the FPKM (fragments per kb per million ~ RPKM) 

a. -o Specifies the output directory 

b.  -u Tells Cufflinks to do an initial estimation procedure to more accurately weigh reads 

mapping to multiple locations in the genome. See How Cufflinks Works for more details. 

c.  -b Genome fasta file so that cufflinks can perform bias correction 

d.  -G Specifies the  gff annotation file for the genome 

e.  The final argument is the mapped reads (.bam) file produced by Tophat  

 

97 $ cufflinks -o Sample001.cuffout -u -b ~/database/TAIR10.fa -G 
~/database/TAIR10_trans.gff Sample001.topout/accepted_hits.bam 

 

Take a look at the genes.fpkm_tracking file under Sample001.cuffout 

Bowtie output can be directly visualized with Tablet, a freeware available at 

http://bioinf.scri.ac.uk/tablet/index.shtml. You can use Bowtie not only for mapping to complete 

databases but also for looking at a single reference gene or contig by altering the reference in analogy 

to the process described above. If you use it that way, you can directly look at the output in a GUI 

using tablet. 

Cufflinks has implemented differential expression testing on the raw mappings in the program 

cuffdiff, which allows for both robust and (comparatively) easy statistics when using this pipeline. 

http://bioinf.scri.ac.uk/tablet/index.shtml


RNA-seq Workshop Aachen 2015 
 

45 
 

Read mapping and counting with CLC 

1. Install the CLC annotation plug-in. 

2. Load the reference sequences from http://www.arabidopsis.org/  

3. Download the gff file from http://www.arabidopsis.org/  

4. Annotate the reference sequence in CLC using the plug-in 

5. Using CLCs RNA-seq tool, map the reads to the reference 

6. Inspect the result table and choose the desired outputs. 

7. Export the result table for further analysis 

 

Statistical evaluation of readcounts 

In this section we are going to use the R package introduced in the basics section. For the statistical 

comparison of gene expression data, we need at least two datasets. Therefore we prepared a file called 

Dc3000.txt and mock.txt. The readcount files created in the counting-reads section are formatted 

in an inappropriate way for the R Script: variable number of spaces, number of reads, single space and 

identifier. We are now going to reformat that file to: identifier, tab, number of reads. (As we need 

some replication both files already give data for three replicates) 

1. Import both files separately into excel 

 

2. Copy mock into the second tab of dc3000 and name the sheet mock 

3. select E2 and enter VLOOKUP formula: =VLOOKUP(A2,mock!A:D,2,FALSE) 

http://www.arabidopsis.org/
http://www.arabidopsis.org/


RNA-seq Workshop Aachen 2015 
 

46 
 

 

4. select F2 and enter VLOOKUP formula: =VLOOKUP(A2,mock!A:D,3,FALSE) 

5. select G2 and enter VLOOKUP formula: =VLOOKUP(A2,mock!A:D,4,FALSE) 

6. drag the whole columns down so you get values for all  

7. Save file as tab separated txt format by clicking “Save as”, choosing “tab separated text 

(*.txt)” from the dropdown menu and naming it “counts.txt” 

The reformatting shows two major changes, first the order of columns is changed in comparison to the 

readcount file and second the samples are merged into one file. We could have done this is R but it 

would not have been so easy.  

 

 

98 > library(edgeR) 
99 > x <- read.table("counts.txt",row.names=1,header=T,sep=”\t”) 
100 > group <- factor(c(“dc”,”dc”,”dc”,”mock”,”mock”,”mock”)) 
101 > y <- DGEList(counts=x,group=group) 
102 > y <- calcNormFactors(y) 
103 > y <- estimateCommonDisp(y) 
104 > y <- estimateTagwiseDisp(y) 
105 > et <- exactTest(y) 
106 > topTags(et) 
107 > summary(de <- decideTestsDGE(et, p=0.05, adjust="BH")) 
108 > detags <- rownames(y)[as.logical(de)] 
109 > plotSmear(et, de.tags=detags) 
110 > write.table(file="results.txt",sep="\t",topTags(et,n=length 

(rownames(y)))) 

 

1. The library() command loads modules to extend the functionality of R 

2. Remember R uses <- to store information into variables 



RNA-seq Workshop Aachen 2015 
 

47 
 

3. read.table() reads in a file 

4. group tells R what kind of biological replicates you used 

5. DGEList is just a better way of representing your data 

6. EstimateXXXDispersion tries to find the overdispersion 

7. exactTest is just conducting an exact test 

8. decideTests just tells us how many genes are differentially expressed 

9. plotSmear makes the following plot in which DE genes are highlighted 

 

 

 

 

 

 

 

 

 

10. We then write the file to a table which we can open in Excel (be careful the open left cell 

needs to be shifted by one) 

  

  

  

  

 



RNA-seq Workshop Aachen 2015 
 

48 
 

 

Remember: R understands multiline commands, if you write code in R, take as much space as you 

like. Code that is easy to read - even typographically - is easy to change. 

If the R script runs without throwing an error (look at the console), you will find a result directory in 

the current working directory (set by you with setwd(…) command). It will contain all the graphs, 

you could see in RStudio, exported as either .jpg or .png. It will also contain a text file giving a 

detailed output of differential gene expression. 

 

  

  

  

  

  

  

  

  

  



RNA-seq Workshop Aachen 2015 
 

49 
 

Biological Interpretation 

Similar to the early days of microarray experiments, RNA-seq experiments can currently still be 

published on their own, especially if non-model species are analyzed. A successful manuscript 

tolerates about 20% speculation (interesting single genes, new hypotheses) if 80% of the manuscript 

consists of solid data which fits into previous work. 

To provide the 80%, a set of testable hypotheses is needed. Similar to classical wet bench experiments, 

the hypotheses are derived from previous experiments or published work. As an example, the 

comparison between a green and a non-green tissue RNA-seq experiment is chosen. The tests can be 

transferred to any dataset comparison. 

Example 1: RNA-Seq was performed on Leaf and root samples from maize and then compared: 

In the green data set, the photosynthetic genes are expressed; in the non-green data set, the 

photosynthetic genes are not expressed 

Test: 

i) create a functional annotation of the genes using a reference of choice (Mapman categories, 

GO terms, KEGG terms),  

ii) use sorting and/or Excel functions to count the number of photosynthetic genes expressed in 

each dataset -> reject of support the initial hypotheses [based on your interpretation of the 

data]  

iii) formalize the test by testing enrichment (using Chi-square or Fishers Exact Test) of 

photosynthetic genes in the green compared to the non-green dataset [formally reject or 

support initial hypothesis] 

Visualization:  

i) reformat the datatable according to the needs of Mapman  

ii) visualize the photosynthetic category 

 

Create three additional hypotheses about the dataset which are testable similar to the example above. 

  

  

  

  

 



RNA-seq Workshop Aachen 2015 
 

50 
 

Creating an Functional Annotation 

The objective is to produce an annotation table from publicly available data sources; the example is 

Arabidopsis but will work for any species or reference sequence collection. We routinely annotate our 

species with Arabidopsis. The annotation of the transcriptome databases links to the closest 

Arabidopsis homologue and we transfer the information gathered as described below. 

1. Get an annotated reference database that is hierarchical (that means NO GO terms), example 

Mapman categorization (http://mapman.gabipd.org) For the Mapman Table we need to reformat 

the table first: Reorder the columns into IDENTIFIER; DESCRIPTION; NAME. Use the text to 

columns tool in the spreadsheet program to split the NAME column at each point. Rename the 

headers into Mapman1, Mapman2,… Voila, you got yourself a basic annotation 

2. Reopen the text file in the spreadsheet program and copy it in a new sheet in the original 

annotation table. 

3. Make sure that the Identifiers in both sheets are exact matches (including capital letters). Use 

VLOOKUP (SVERWEIS in german) for string pattern matching: =VLOOKUP(Lookupvalue; 

SearchMatrix; column for return value; FALSE) in this example 

=VLOOKUP(A2;2ndSheet!A:B;2;false). Fill the column. Copy the column and reinsert values 

only. 

Any information that is organized as a table can be imported into the annotation. Examples are 

transcription factor annotations from a review, results from a localization prediction program, really 

anything. 

 

You can also use the MapMan online service for automatic annotation called Mercator. 

http://mapman.gabipd.org/web/guest/app/mercator. Here you can submit a whole transcriptome 

(AFTER assembly).  But this would take too long within the course. 

 

You can also map GO terms into the table. Since these are NOT hierarchical terms, you cannot use 

them easily for the follow-up analysis suggested below. To use GO terms, we recommend using one of 

the many JAVA based enrichment test tools such as AgriGO 

(http://bioinfo.cau.edu.cn/agriGO/index.php) for enrichment tests.  

The way you annotate your table will heavily depend on what you want to analyze and on how much 

is known. While A. thaliana is the best annotated reference, it may not be suitable for non-dicot plants. 

Whatever you use, make sure that it is a species whose genome is complete so that your reference is 

http://mapman.gabipd.org/
http://mapman.gabipd.org/web/guest/app/mercator
http://bioinfo.cau.edu.cn/agriGO/index.php


RNA-seq Workshop Aachen 2015 
 

51 
 

complete as well. Making your own annotation for a whole genome (apart from copying in 

information already provided as we did today) will take weeks to months. 

The annotation table can be used for both analyzing the assembly and for analyzing a read frequency 

table. 

Assigning group membership using Excel 

Locate the photosynthetic category/categories included in the Mapman annotation. Using Excel 

functions (=COUNTIF, =COUNTIFS), count the number of genes annotated as photosynthetic, of genes 

annotated as photosynthetic and of genes annotated as photosynthetic and expressed in green tissue. 

Construct a table: 

 photosynthetic non-photosynthetic sums 

Found in Green 

Tissue 

  Sum of 

photosynthetic and 

not photosynthetic 

Not found in Green 

Tissue 

  All non found in 

green tissue 

Sums All photosynthetic All non photosynthetic Grand Sum 

Excel sets its tables for a Chi Square test up in a different way! 

Generally these tables always look like this, they behave a little bit like a Soduku, you only need a few 

numbers to fill out the whole table 

 Property A Not property A All 

Property B U V U+V 

Not Property B X Y X+Y 

Sums All with property A 

(U+X) 

All not having property 

A 

(V+Y) 

(U+X)+(V+Y) 

OR 

(U+V)+ (X+Y) 

 



RNA-seq Workshop Aachen 2015 
 

52 
 

Calculate the p-value using the chi-square test, using the Fishers Exact Test and check whether the 

enrichment of photosynthetic genes expressed in green tissue is significant. 

You can find an online version of the Fisher test here. 

http://www.quantitativeskills.com/sisa/statistics/fisher.htm 

The key to successful data evaluation is producing hypotheses before and while looking at the data. To 

generate the 80% it is important to look at pathways and gene groups and to NOT look at single genes. 

An example of a hypotheses-driven RNA-seq manuscript (which is worded in terms of hypotheses 

testing research) is: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04331.x/full 

 

Example 2: Three tissues of the water fern Azolla filiculoides were RNA-seq’ed and unigenes 

created by assembly. No fern has been sequenced todate, neither as a genome, nor as a 

transcriptome. The sequencing was deep enough to be complete but, due to the phylogenetic 

distance, the fern has more unique transcripts that cannot be annotated compared to dicot plant 

transcriptome sequencing (80% annotation rate) 

Test:  

i) annotate the unigenes by Blast against A. thaliana, against S. moellendorffii and P. patens 

ii) count the number of annotated and non-annotated transcripts, calculate the annotation 

percentage  

iii) map the unigenes at the Kegg automatic annotation server and inspect the maps for 

completeness of central metabolism 

Visualization:  

i) Venn diagram of annotations  

ii) map output from KAAS 

 

 

  

  

  

  

  

 

http://www.quantitativeskills.com/sisa/statistics/fisher.htm
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04331.x/full


RNA-seq Workshop Aachen 2015 
 

53 
 

Biological information from the assembly 

You can check how many transcripts of a reference database you were able to assemble. Before you 

do that, you want to formulate a few hypotheses. You know most about your tissue or your mutant. 

Take the time to make these predictions and see if they come true. If they do, fine; if they don’t, you 

have not yet really understood your tissue or mutant. As a simple example, if you sequence a leaf 

transcriptome, you expect that you will get contigs for all the genes involved in photosynthesis. You 

may also expect that genes involved in regulation are underrepresented because of the large dynamic 

range in leaves. How can you test hypotheses like these in a way that is publishable? 

1. Produce a unigene list from the unigene database 

Navigate to the folder containing the unigenes database: 

111 $ grep ”>” Azolla_unigenes.fasta > listofallunigenes.txt 

2. Use a texteditor to remove the > from the dataset 

3. For each sequence in the annotated reference, map whether it is covered by a contig or not. 

Extract the relevant information from a Blast Output File 

112 $ cut –f2 ExampleBlastResult.txt | sort | uniq  > 
ExampleBlastResult_reduced.txt 

 

Open ExampleBlastResult_reduced.txt with a spreadsheet program. Add a “y” in a second 

column behind each entry. 

4. Connect all datasets 

Copy the ExampleBlastResult_reduced.txt into the spreadsheet the list of unigenes. Make 

sure that the Identifiers in both sheets are exact matches (including capital letters). Use 

VLOOKUP (SVERWEIS in german) for string pattern matching: 

=VLOOKUP(Lookupvalue; SearchMatrix;column for return value;FALSE). Fill the column. 

Copy the column and reinsert values only. 

5. Draw a Venn diagram (e.g. http://bioinfogp.cnb.csic.es/tools/venny/)  

 

  

  

  

 

http://bioinfogp.cnb.csic.es/tools/venny/


RNA-seq Workshop Aachen 2015 
 

54 
 

Example 3: Multiple tissues of Z. mays were RNA-seq’ed (Sekhon et al. 2012). Similar tissues 

have similar genes expressed, i.e. all leaves and all seed derived samples share gene expression 

patterns. 

Test:  

i) Load data into HCL (Hierarchical sample clustering) or PCA (principal component analysis) 

tool (see below point 7 & 8 for more information) 

ii) cluster data to check whether similar tissues cluster together 

Visualization:  

i) Plot of the PCA and/or HCL of samples 

Biological interpretation of more than two samples 

Sometimes you are not only comparing two stages but you want to analyze a series of timepoints, 

tissues, species, etc that do NOT share a common reference point. You want to determine which genes 

have similar and which genes have different expression patterns to identify genes that may be involved 

in the same pathway or response. In this case, the same analyses strategies that have been applied to 

micro array analyses of the same type can be applied: hierarchical clustering, k-means clustering, 

weighted gene co expression network analysis, others. We will explore one out of many possible 

ways. 

Open ExampleFile_multiplesamples.txt with a text editor. It is in the format: IDENTIFIER, 

DESCRIPTION, READ COUNT VALUE SAMPLE1, 2, 3, … Each sample is a log2 transformed 

rpkm value. 

1. Open the MultiExperiment Viewer (MeV; http://www.tm4.org/mev/). 

2. Load the data by following the instructions on your screen (ignore the possibility of 

annotations). 

3. Transform the data by mean (or median) centering the rows. 

4. Save the matrix with a new name. 

5. Open a second MultiExperiment Viewer and load the new matrix. As a first step, we will 

inspect if the samples “look okay”. 

6. Under “Samples”, color each group of replicate samples with a different color code. 

7. Run a Principle component analysis (PCA): all replicates should group closely together, but 

apart from other samples in the different dimensions; similar tissues should cluster together 

http://www.tm4.org/mev/


RNA-seq Workshop Aachen 2015 
 

55 
 

8. Run a hierarchical sample clustering (HCL) with the settings Euclidean, average linkage on 

the samples, NOT the genes: Replicate samples should group together; similar tissues should 

cluster together 

These tests can also be applied to experiments with two samples, if each has multiple replicates, and 

the tests give a good indication if the sampling and sample processing went right. Now we will cluster 

the samples. First we will use k-means clustering. This clustering type forces you to specify how many 

clusters you want and the algorithm will sort them into clusters. You can theoretically use a Figure of 

Merit (FOM) analysis to determine the number of clusters statistically. In practice, FOM only works if 

the number of rows to be clustered is sufficiently small. Depending on the dataset, it could be about a 

hundred to a thousand. If you apply a FOM, the graph will flatten to 0 and where it does so, is the 

‘right’ number of clusters. This never works with gene expression data, but still. 

9. Run a FOM analysis. Specify that you want up to 20 clusters and three repeats of the analysis. 

Inspect the graph, you will not find the flat line, rather a constant decrease rate. (Doing a FOM 

will impress the statistical reviewer of your paper, results straight to supplemental, of course.) 

10. Run a k-means clustering with a cluster number (say 12), and specify Euclidean or Pearson. 

11. Inspect the results. 

12. Members of each cluster can be exported as txt files (and added to an annotation and probed 

for pathway enrichment in particular clusters ). The pattern themselves might provide 

important clues about the dataset. 

For hierarchical clustering, a lot of memory is required. The calculation time depends on the RAM 

available to the program.  

  

  

  

  

  

  

  

  

 



RNA-seq Workshop Aachen 2015 
 

56 
 

SNP calling 

CLC will call SNPs for you. It requires a read mapping prior to executing SNP calling.  

1. Open CLC genomics workbench. Import a reference. Import reads. 

2. Map the reads by choosing map reads to reference with default parameters. 

3. Open the SNP detection tool. Choose the read mapping. CLC will offer options as to when to 

annotate a SNP (leave the defaults for quality, adjust the significance values based on your 

own parameters; e.g. require at least a ten read coverage and require that one variant can only 

be called a SNP if it is detected in at least 10% of the variants; values may vary based on your 

sample!) 

4. CLC will create an exportable table. 

If your RNA-seq sample is from a species without a sequenced reference genome, you can use this 

tool to determine the genetic variation in your species. To properly interpret your data, it is important 

to be aware of the number of individuals the RNA was isolated from. 

 

Splice isoform differentiation 

If mapping on a reference sequence with annotation (by gff file, see Gene Expression, CLC bio), CLC 

bio will return splice isoform mapping percentages immediately. Splice isoform discovery is possible 

with open source mapping tools but is not covered in this workshop. 

 

Other – less obvious – pieces of information contained in the dataset 

Your database contains expression values which are usually quite well compareable to qRT-PCR data 

(but there might be of course some sequencing biases). Nevertheless unlike microarray experiments, 

you can ask questions like “How much mRNA does the cell devote to one pathway?” Guess what 

percentage of the total transcriptome encodes genes of the electron transfer chain in the chloroplast? 

10%? 30%? 50%? With the absolute values in hand we can look it up. Assume, you have sequenced a 

really unusual tissue, maybe nectary glands, glandular trichomes, epidermal cells of carnivorous 

plants. Which transcripts may dominate those tissues in absolute numbers? If you sequence a 

particular tissue in a particular species, it may help if you develop hypotheses about what you are 

likely to see BEFORE you ever look at the data. Those hypotheses will depend on the available 

literature and are a good starting point for writing up the paper at a later stage. 

The expression values may also help you identify which isoform is active in a particular pathway. 

While not absolutely true (exemption example, sulfur assimilation), the mRNAs encoding enzymes in 



RNA-seq Workshop Aachen 2015 
 

57 
 

a pathway, are reasonably similar in expression. The major isoforms responsible for primary 

metabolism can generally be identified from the data even it is not annotated as such in databases. 

In our experience, metabolite flux roughly equals transcript abundance [The statement sounds crazy, 

we know]. But we can predict from a dataset with reasonable accuracy which pathways carry a high 

flux and which do not. We cannot make predictions about single enzymes since the maximal flux 

depends on kcat AND protein amount (and posttranslational modifications and probably half a dozen 

other things), but for pathways with multiple genes we can. 

Biological interpretation of two samples 

The analysis of RNA-seq data is similar to the analysis of microarray data. Consequently, similar 

analysis tools can be used. 

In a publication focused exclusively or mainly on the RNA-seq analysis, only very limited discussion 

about single candidate genes will be tolerated by the reviewers. In our experience, about 80% of the 

manuscript will have to focus on the analyses at a larger scale. Given this focus, at the end of the 

manuscript, a little speculation will be okay. Of course if you extracted a single gene and showed by 

ko/ox that this particular gene carries a role, this might be a different story. Usually, however this will 

be a new manuscript 

RNA-seq analysis can and will serve to identify candidate genes. In this case, a large part of the 

publication will focus on the results generated by this single gene analysis. We will now briefly 

discuss how to identify candidate genes from an experiment. 

1. Produce an annotation for the reference sequences you are using. Think about publicly 

available information important for your project that you could add. Using the Linux 

commands, text editor tools and a spreadsheet program, almost all tabular information can be 

transferred. For now, use the annotation information produced earlier. 

2. Map the read count data for all samples and replicates onto each reference sequence using 

VLOOKUPas you did for the statistical evaluation (Statistical Evaluation of readcounts) 

3. Also add e.g. MapMan or other annotations as you did in (Biological information from the 

assembly) as the gene codes as such won’t be very meaningful 

4. Now you are able to play with the data, resorting according to different parameters and 

looking through the annotations whether a gene or a whole group of genes appears to be a 

good candidate for whatever you are seeking. This format can also be presented to other 

members of your team, who were not involved in the analysis so that they can look for 

interesting single genes. This is because most people know how to navigate in Excel 



RNA-seq Workshop Aachen 2015 
 

58 
 

A table format like this one also enables you to check pathway behavior or check on a group of genes 

for which you have included a specific annotation, maybe your pathway of interest. The inspection of 

the table may suggest testable hypothesis for the large scale analysis. 

 

Let’s recall the methods: 

1. If you have created the annotation table for single gene analysis, you can now use COUNTIFS 

functions to probe pathway enrichment 

2. Start by establishing how many members are present in each category =COUNTIF(target 

column;criterion) 

3. You might want to change p-values just to indicator flags significant (1) or non-significant (0), 

but this is of course up to your liking.  

4. Calculate how many members of each category are present among your group (e.g. significant 

changed genes, upregulated); =COUNTIFS(target column 1; criterion1; 

significance column; “y”; log change column; “>0”) 

5. Calculate the number of references in your group (e.g. significant changed genes, upregulated) 

and the total number of references. 

6. Install a Fishers Exact Test AddIn (i.e. http://www.obertfamily.com/software/fisherexact.html) 

or write a VBA script or use a webtool 

(http://www.quantitativeskills.com/sisa/statistics/fisher.htm) for Fishers Exact Test. Fishers 

Exact Test sort of works like a chi square but can be used safely with small numbers. The 

output is a p-value. 

7. Calculate a Bonferroni correction (or any other correction you prefer) of the p-value based on 

the number of categories you tested. For Bonferroni the new alpha = alpha/number of 

categories 

8. Draw conclusions 

Having your own analysis pipeline enables you to get creative. If (for instance) you suspect a 

connection with auxin and gene expression changes; your testable hypothesis could be :”Auxin  

upregulated genes are overrepresented in the genes upregulated in mutant X compared to wildtype.” 

You can analyze a publicly available microarray experiment (for example from AtGenExpress) with a 

standard pipeline for differentially expressed genes (we recommend RobiNA; 

http://mapman.gabipd.org/web/guest/robin) and map the ‘significantly upregulated under auxin 

treatment’ into the Annotation File using VLOOKUP functions. Afterwards, you can test enrichment 

with a Fishers Exact Test. No alpha correction required. 

http://www.obertfamily.com/software/fisherexact.html
http://www.quantitativeskills.com/sisa/statistics/fisher.htm
http://mapman.gabipd.org/web/guest/robin


RNA-seq Workshop Aachen 2015 
 

59 
 

Or if you suspect a connection to any phytohormone… You guessed it; you analyze multiple publicly 

available microarray experiments with the standard pipeline and map the information into different 

columns. You test enrichment. This time you need to correct the alpha based on how many different 

hypotheses you tested. 

Anything you can map into the annotation table can be tested for over- or underrepresentation! 

WARNING However there is one little problem with RNAseq (Here it is worse than microarrays). 

Your sensitivity for differential expression is not equal everywhere. Consider this: an upregulation 

from 2 to 4 reads is a 2 fold change, but so is an upregulation from 2000 to 4000. And indeed the 

statistical power for differential expression is higher in the latter. Therefore it is easier to detect 

differential expression for the second gene. Now if you do a Fisher test for enrichment of differentially 

expressed genes, you might miss a lot of the lowly expressed genes just because you couldn’t detect 

differential expression (which doesn’t mean it is not there). If there is a bias in functional groups 

between high and low expression, this bias will be carried over. E.g. genes for photosynthesis might be 

very high and transcription factors low. So in an experiment where processes change randomly you 

would think that photosystem is more effected than though by chance and transcription factors less 

than expected by chance. 

Recommendation: R provides tools to correct for this bias, for an intial overview it is often enough to 

just use the Fisher test as described above. 

 

 

You could also use GO terms for the enrichment analysis or display the group of genes on pathways 

with the help of the KAAS server or the MapMan server (http://mapman.mpimp-

golm.mpg.de/general/ora/ora.shtml). Another possibility is to visualize the ratios and to analyze for 

pathway enrichment using a Fisher test in the MapMan GUI tool: 

1. Download MapMan (http://mapman.gabipd.org, already available on the computer in this 

case). 

2. Download the Arabidopsis annotation table (called mapping) from the MapMan store 

(Resources category; already installed on your computer). 

Mapman requires three pieces of information to display data: the experiment, the mapping and the 

pathway. Mapping and pathway are already provided with Mapman, but you need to produce the 

experiment table. 

1. Save your annotation table with the log fold change information to a new name. 

2. Delete all columns except the identifier and the log fold change. 

http://mapman.mpimp-golm.mpg.de/general/ora/ora.shtml
http://mapman.mpimp-golm.mpg.de/general/ora/ora.shtml
http://mapman.gabipd.org/


RNA-seq Workshop Aachen 2015 
 

60 
 

3. For Mapman to work, the identifier needs to have the exact same string syntax as the identifier 

in the mapping file. That means small a, small t, small g, no transcript suffix .X. Change the 

letters with the replace function. There is no transcript suffix. Save the table as a simple 

textfile. 

4. Import the text file as a new experiment. 

Click through the different pathways and note what has changed. 

 

It is possible to carry out the gene expression analysis in a Java based tool, RobiNA 

(http://mapman.gabipd.org/web/guest/robin). Essentially the tool combines the read mapping, the 

statistical analysis and the visualization into one workflow. The advantage is a GUI, no need of the 

command line. The disadvantage is that you can only do what the developers envisioned. RobiNA is 

installed on the computer. Have a try if you have time or try it at home.   

  

  

  

  

 

http://mapman.gabipd.org/web/guest/robin


RNA-seq Workshop Aachen 2015 
 

61 
 

Annex 1: Setting up your environment 

Setup your working environment - Examples 

1 Installation of BLAST 

i) Download the recent BLAST release for Linux 64Bit from 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST 

ii) The zipped file contains executables, which don’t need to be installed, they just have 

to be extracted and copied to the correct directory (here: ~/software) 

Change to your home directory and create a directory for software: 

113 $ cd 
114 $ mkdir software 

 

Change to ‘Downloads’ directory (we assume that this is the file was downloaded to): 

115 $ cd ~/Downloads 

 

To uncompress the files, use the untar command with the flags -xvzf: 

116 $ tar -xvzf blast-2.2.26-x64-linux.tar.gz 

 

Move the contents to your software directory: 

117 $ mv -n blast-2.2.26/* ~/software/ -r 

 

Test if installation is successful: 

118 $ blastall 

 

2 Installation of BLAT 

i) Download the BLATsuite from Jim Kent’s Website 

http://hgwdev.cse.ucsc.edu/~kent/exe/linux/ 

 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST
http://hgwdev.cse.ucsc.edu/~kent/exe/linux/


RNA-seq Workshop Aachen 2015 
 

62 
 

If you want the 64 bit version of BLAT, you can find this on the following site:-  

http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/blat/ 

ii) The most recent version is v36: blatSuite.36.zip 

iii) move the .zip file to you software directory and unzip it 

Change to the 'Downloads’ directory and move blatSuite36.zip to the software directory: 

119 $ cd ~/Downloads 
120 $ mv blatSuite36.zip ~/software/ 

If in doubt, whether to use unzip or gunzip you can always check what Unix suggests by using the 

file command. 

 

121 $ file blatSuite36.zip 

 

Now uncompress the zip file using unzip: 

122 $ unzip blatSuite36.zip 

 

Test if BLAT is working: 

123 $ ~/software/blat 

 

3 Installation of FASTX 

a. Go to the Galaxy-FASTX toolkit download page here: 

http://hannonlab.cshl.edu/fastx_toolkit/download.html 

b. Download the latest version of fastx_toolkit and libgtextutils and save to Downloads 

c. Open terminal 

Change directory to the Downloads directory: 

124 $ cd Downloads 

Extract the downloaded packages, e.g. libgtextutils-0.6.tar.gz and fastx_toolkit-

0.0.13.tar.bz2 

When the file suffix is .tar.bz2, one needs to provide the -j parameter to tar 

http://hannonlab.cshl.edu/fastx_toolkit/download.html


RNA-seq Workshop Aachen 2015 
 

63 
 

125 $ tar -xzvf libgtextutils-0.7.tar.gz 
126 $ tar -xvjf fastx_toolkit-0.0.14.tar.bz2 

Install gtextutils: 

127 $ cd libgtextutils-0.7 
128 $ ./configure --prefix=/home/$USER/software 
129 $ make 
130 $ make install 

 

Install fastx-toolkit: 

131 $ export 
PKG_CONFIG_PATH=/home/$USER/software/lib/pkgconfig:$PKG_CONFIG_PATH 

132 $ cd ~/Downloads 
133 $ cd fastx_toolkit-0.0.14 
134 $ ./configure --prefix=/home/$USER/software 
135 $ make 
136 $ make install 

 

The compiled programs can now be found in your home directory in software/bin/ 

 

4 Installation of Trinity 

i) Download the current Trinity package from 

https://github.com/trinityrnaseq/trinityrnaseq/releases 

ii) Move, unpack, and compile Trinity source code 

 

137 $ mv trinityrnaseq-2.0.6.zip ~/software 
138 $ cd ~/software 
139 $ unzip trinityrnaseq-2.0.6.zip 
140 $ cd trinityrnaseq-2.0.6 
141 $ make 

 

  

  

  

  

  

https://github.com/trinityrnaseq/trinityrnaseq/releases
http://www.ebi.ac.uk/~zerbino/oases/


RNA-seq Workshop Aachen 2015 
 

64 
 

5 Finding sequence files for reference genome (example TAIR10 coding sequences fasta file) 

i) Open google.com in your browser 

ii) Search for terms such as “Arabidopsis” “genome” “blast” “blast database” “blast set” 

iii) In almost any possible combination you will be referred to www.arabidopsis.org 

iv) Since you want to Download the geneset, instead of using it online, click on 

“Download” 

v) This redirects you to the FTP-section of the website. Here you can browse similar to 

the standard file explorer. 

vi) There are several ways to find the desired dataset, as there are crosslinks throughout 

the directory tree. The most intuitive ones are: 

i. Sequences->blast_datasets/TAIR10_blastsets/… (<-newest version) 

ii. Genes->TAIR10_genome_release/…->TAIR10_blastsets 

1. The file you need is: TAIR10_cds_20101214_updated 

vii) Right Click -> Save As/Save Link as -> Select folder 

6 Installation of bowtie/tophat/cufflinks 

i) Go to respective sites and down load binaries 

ii) for bowtie: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, click on 'latest 

release' and then the linux version 

iii) for tophat: http://ccb.jhu.edu/software/tophat/index.shtml, click on the linux binary 

under 'Releases' 

iv) for cufflinks http://cole-trapnell-lab.github.io/cufflinks/install/, click on the latest 

linux release 

v) Move to software directory and unzip. 

142 $ cd ~/Downloads 

 

Move to ~/software/ (exact version names may change as programs are updated) 

http://www.arabidopsis.org/
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_blastsets/TAIR10_cds_20101214_updated
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/install/


RNA-seq Workshop Aachen 2015 
 

65 
 

143 $ mv bowtie2-2.2.5-linux-x86_64.zip ~/software/ 
144 $ mv tophat-2.0.13.Linux_x86_64.tar.gz ~/software/ 
145 $ mv cufflinks-2.2.1.Linux_x86_64.tar.gz ~/software/ 

 

Change to ~/software and extract files: 

146 $ cd ~/software 
147 $ unzip bowtie2-2.2.5-linux-x86_64.zip 
148 $ tar -zxf tophat-2.0.13.Linux_x86_64.tar.gz 
149 $ tar -zxf cufflinks-2.2.1.Linux_x86_64.tar.gz 

 

Test whether the programs work: 

150 $ cd bowtie2-2.2.5 
151 $ ./bowtie2 
152 $ cd ../tophat-2.0.13.Linux_x86_64/ 
153 $ ./tophat2 
154 $ cd ../cufflinks-2.2.1.Linux_x86_64/ 
155 $ ./cufflinks 

 

  

  

  

  

R: Installation of R 

If you run a Linux Operating System, R usually is delivered along with it. However in case it is not, or 

you need a different version of it, here is a very short “how to install”, requiring you to be admin on 

the computer. 

Attention: If you are not the admin at this computer, make your admin install the R Package for you. R 

is no fun - if it works at all - when installed in a reduced-permission user environment. 

1. The golden way to install R in a Linux environment is using the native package manager. 

Install R on Ubuntu Linux: 

156 $ sudo apt-get install r-core 

 

Install R on Fedora Linux: 



RNA-seq Workshop Aachen 2015 
 

66 
 

157 $ sudo yum install R-core 

 

2. An installation into Mac OSX or Windows environment is much easier. Just download and 

double-click the corresponding installer from http://cran.r-project.org/ 

3. After installing the R base software, the computer is able to understand R scripts, but due 

to the nature of R, this just works at command-line level. For user-friendly working with R 

we suggest the use of a GUI. Go to http://rstudio.org/ 

4. RStudio is available for all three kinds of operating systems. The installation is as easy as 

downloading and double-clicking. 

5. If you open RStudio for the first time, you might be asked for the path R was installed to 

(not if you used a package manager under Linux) 

6. Click on New R Script or open one you downloaded somewhere. 

7. Now you see that RStudio is usually divided into four views. Top-Left is the Scripting 

area that is where the Script is shown or typed into. There are buttons to execute the script, 

either line by line or the whole script at once. Top-Right is a Workspace Overview that 

shows the names and contents of all variables that your R session knows at that time. You 

don’t need to understand the concept of variables in R, but this view is nice to see what R 

actually does with your data. You can click double click on any variable to get a primer on 

what the contents look like. Bottom-Left you see the R console. As R is a mathematical 

(programming) language, the simplest form of an interactive parser, that tells the computer 

what to do, but still interacts with the user, is a console. You can use it to type R 

commands and execute them; however, we would suggest using the scripting area because 

it is easier to track commands and save as file after executing. Finally the Bottom-Right 

area is where the plots/figures are drawn. There are buttons to switch between multiple 

plots (arrows) and to export the graphics to a file. 

8. To give a good example of very complex code, that is easy to handle as a biologist, we will 

run you through the installation and execution of the “DEGSeq” package that was developed to detect 

differential gene expression in RNA-seq datasets. 

a. Visit http://www.bioconductor.org/packages/2.6/bioc/html/DEGseq.html 

b. On the landing page, there are already instructions to install the package, follow 

them 

http://cran.r-project.org/
http://rstudio.org/
http://www.bioconductor.org/packages/2.6/bioc/html/DEGseq.html


RNA-seq Workshop Aachen 2015 
 

67 
 

c. In your Scripting area (Click File New->New R Script if necessary) type: 

source("http://bioconductor.org/biocLite.R") 
biocLite("DEGseq") 

 

d. Select the two lines with your cursor and click on “run” which runs the current 

line or the selection (if available). Watch the console. 

e. Run the first few lines of the example code from the “Example for DEGSeq” in 

the PDF manual. 

kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package = 
"DEGseq") 
liverR1L2 <- system.file("extdata", "liverChr21.bed.txt", package = 
"DEGseq") 
refFlat <- system.file("extdata", "refFlatChr21.txt", package = 
"DEGseq") 
mapResultBatch1 <- c(kidneyR1L1) 
mapResultBatch2 <- c(liverR1L2) 
outputDir <- file.path(tempdir(), "DEGseqExample") 

 

 

f. What you should have noticed by now, the R console is always preceded by a “>” 

symbol. This is to tell the user, that R is expecting input. 

g. The next command in the example is a multiline command. The second line of the 

command is preceded by a + sign. This tells the user, that the line is only 

continuing a preceding line and is not a new command. 

 

> DEGseq(mapResultBatch1, mapResultBatch2, fileFormat = "bed", 
+  refFlat = refFlat, outputDir = outputDir, method = "LRT") 

Attention: If you copy the above command into R, you will get an error. Why is that, you just 

copy&pasted??? The reason is, that in some PDFs not the R scripts are printed, but the console output 

when the script is executed. That results in commands being extended by preceding “>” and “+” signs. 

If you remove them the code will work. 

 



RNA-seq Workshop Aachen 2015 
 

68 
 

h. We will further use this package in the gene expression section. 

  

  

  

   



RNA-seq Workshop Aachen 2015 
 

69 
 

Copyright 

 

This workshop script is copyrighted under terms of the creative commons license for attribution 3.0. 

(http://creativecommons.org/licenses/by/3.0/) 

That means you are free to share, copy and modify this manuscript for any purpose, commercially as 

well as non-commercially, under the condition that you attribute the authors:  

Andrea Bräutigam 

Marie Bolger 

 

Legal code of the license: 

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS 

PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT 

LAW IS PROHIBITED. 

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS 

LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE 

OF SUCH TERMS AND CONDITIONS. 

1. Definitions 

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of 
music or other alterations of a literary or artistic work, or phonogram or performance and includes cinematographic adaptations or any other form in which the Work may 
be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will not be considered an 
Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in 
timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License. 

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject 
matter other than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the 
Work is included in its entirety in unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which 
together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this 
License. 

c. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership. 
d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License. 
e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be 

identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, 
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first 
fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast. 

f. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic 
domain, whatever may be the mode or form of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work 
of the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a 
cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving 
or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, 
sketch or three-dimensional work relative to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the 
extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or artistic work. 

g. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has 
received express permission from the Licensor to exercise rights under this License despite a previous violation. 

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire 
or wireless means or public digital performances; to make available to the public Works in such a way that members of the public may access these Works from a place 
and at a place individually chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances of the 
Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images. 

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations 
of the Work, including storage of a protected performance or phonogram in digital form or other electronic medium. 

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in 

connection with the copyright protection under copyright law or other applicable laws. 

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable 

copyright) license to exercise the rights in the Work as stated below: 

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections; 
b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or 

otherwise identify that changes were made to the original Work. For example, a translation could be marked "The original work was translated from English to Spanish," or 
a modification could indicate "The original work has been modified."; 

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and, 
d. to Distribute and Publicly Perform Adaptations. 
e. For the avoidance of doubt: 

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing 
scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License; 

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme 
can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise by You of the rights granted under this License; and, 

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a 
collecting society that administers voluntary licensing schemes, via that society, from any exercise by You of the rights granted under this License. 

http://creativecommons.org/licenses/by/3.0/


RNA-seq Workshop Aachen 2015 
 

70 
 

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically 

necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved. 

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions: 

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License 
with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of 
the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices 
that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the 
Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to 
that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the 
Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable, remove from the 
Collection any credit as required by Section 4(b), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove 
from the Adaptation any credit as required by Section 4(b), as requested. 

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all 
copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if 
supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution 
Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the 
extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing 
information for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French 
translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit required by this Section 4 (b) may be implemented in 
any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of 
the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the 
avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under 
this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution 
Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties. 

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either 
by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be 
prejudicial to the Original Author's honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of 
this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's 
honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to 
reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise. 

5. Representations, Warranties and Disclaimer 

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR 

WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF 

TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR 

THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED 

WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU. 

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY 

FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF 

LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

7. Termination 

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received 
Adaptations or Collections from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance 
with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License. 

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, 
Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not 
serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force 
and effect unless terminated as stated above. 

8. Miscellaneous 

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the 
license granted to You under this License. 

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license 
granted to You under this License. 

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, 
and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and 
enforceable. 

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be 
charged with such waiver or consent. 

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations 
with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may 
not be modified without the mutual written agreement of the Licensor and You. 

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary 
and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms 
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the 
License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the 
standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included 
in the License; this License is not intended to restrict the license of any rights under applicable law. 

 


